Pythium Crown and Root Rot of Industrial Hemp
Jiahuai Hu and Robert Masson

Pathogen
Several Pythium species including *Pythium aphanidermatum*, *P. ultimum*, and *P. myriotylum*. *Pythium* is a fungus-like organism, similar to, but distinctly different than true fungi. *Pythium* is also referred to as a “water mold” because it is well adapted to damp environments, and requires the presence of water for infection to occur. Under moist conditions, the pathogen produces abundant sporangia containing numerous single-celled, motile zoospores (asexual spores), which are effectively dispersed over short distances by splashing water or air movement. *Pythium* also produces thick-walled chlamydospores (asexual spores) to protect itself during dry conditions. Hyphae from opposite mating types meet and produce thick-walled oospores (sexual spores), causing genetic variation and making it difficult to treat.

Host Range
Wide host range, which includes most agronomic crops, such as: beets, peppers, cucurbits, cabbages, carrots, melons, corn, cotton, wheat, guayule, and turfgrasses, as well as most ornamentals such as chrysanthemum, annuals, and bedding plants.

Symptoms and Diagnosis
Hemp of any age is susceptible. Typical symptoms include pre-emergence damping off, post-emergence damping off, leaf yellowing and browning, stunting, wilting, sudden collapse of entire plant (Fig. 1, 7-9). Shriveled tissue with lesions and necrosis can often be seen at the base of the plant extending up several inches (Fig. 2). Internal tissue of main stem or branches is darkened or pinkish brown (Fig. 2 - 4). Outer cortex of root bark is often completely rotten, exposing the white core (Fig. 3 and 5).

Disease with Similar Symptoms
Fusarium wilt, cotton root rot, Sclerotinia canker, and Verticillium wilt. A laboratory test via microscopy and culture isolation is required for definitive diagnosis. Symptomatic stems and roots should be collected and wrapped in a dry paper towel, placed in a plastic bag, acid
Fig. 2. Dark staining and rot of the underlying tissues progressing upwards from crown.

Fig. 3. Crown region of diseased plant showing necrosis and darkening of the underlying tissues extending into the roots; decayed root bark that is sloughed off readily.

Fig. 4. Staining of the stem core of a diseased plant (left), white stem core of a healthy plant (right).

Fig. 5. Root systems of a disease plant (left) and a healthy plant (right).

Fig. 6. Cottony mycelial growth of *Pythium* on the surface of stalk and roots under high humid conditions.

Fig. 7. Almost complete crop failure in Yuma hemp variety trial plots heavily infested with *Pythium aphanidermatum*.
Fig. 8. A large hemp field in Graham county with high disease incidence of *Pythium* crown and root rot (note: wet soil conditions with plastic mulch film).

Fig. 9. Dislodging of a diseased plant due to rotting and internal decay at the base of the plant.

Fig. 10. Life stages of *Pythium* species

- Zoospores (asexual spores)
- Oospores (sexual spores)
- Sporangium

2-day-old colony on Potato Dextrose Agar
cooled, and shipped overnight to the University of Arizona’s Extension Plant Pathology Laboratory in Tucson. All submissions should be accompanied by completed Plant Disease Diagnostic Form.

Disease Cycle

Pythium species survive in soil for long periods of time primarily as oospores. Infection of hemp roots occurs by producing hyphae, threadlike, filamentous cells (Fig. 6 and 10) that extract nutrients from the host plant. Upon germination, an oospore (Fig. 10) may produce hyphae, or develop a zoosporangium, which produces motile zoospores that swim to, and infect plants. Zoosporangia (Fig. 10) can also germinate and infect plants directly. Zoospores require free water to move through the soil and infect other hemp plants. *Pythium* species can also spread to other adjacent susceptible hemp plants by mycelial growth. *Pythium* propagules can also spread by transportation of contaminated soil, plant materials, and equipment.

Wet soils provide favorable conditions for disease development in hemp. Optimal soil temperatures for *Pythium* vary from species to species, ranging across the spectrum, from cool to hot; both *P. aphanidermatum* and *P. ultimum* favors warm conditions (30-40°C) making them most virulent on hemp plants grown during spring and summer in Arizona.

Management

There are currently no effective fungicides registered for use in hemp to manage *Pythium* species. On other crops, seed treatment, soil drench or foliar application with the following chemistries provides good control against damping off and *Pythium* crown and root rot: metalaxyl or mefenoxam, propamocarb, phosphonate, azoxystrobin, oxathiapiprolin, cyazofamid, and fluopicolide. For a field site with a known history of *Pythium* rot, crop rotation is not an effective measure. Instead, cultural practices such as good drainage and water management should be emphasized to create an environment where seed germination is favored, plant stress is reduced, and risk of infection by *Pythium* is minimized: 1) plant on raised beds to improve drainage and soil compaction, 2) plant in well drained soil and avoid heavy clay/silt soils, 3) monitor irrigation to avoid saturated soil conditions for prolonged periods, 4) utilize tensiometers, mobile and In-Situ digital moisture meters to monitor soil moisture conditions, 5) sterilize potting soil between plantings, 6) remove plastic mulch used for weed suppression after crop establishment to promote drier soil conditions, 7) remove and discard diseased plants and roots to reduce level of *Pythium* population in soils, 8) remove sources of *Pythium* inoculum, 9) reduce drought and nutrient stresses on hemp, and 10) plant less susceptible cultivars when they become available; at the time of this publication no cultivars have been identified that provide suitable resistance to *Pythium* species in Arizona. Consult local County Cooperative Extension offices and Arizona Department of Agriculture: Industrial Hemp Program for updated information on disease resistance in your area.

References

AUTHORS

DR. JIAHUAI HU
Assistant Cooperative Extension Specialist and Plant Pathologist, School of Plant Sciences

ROBERT MASSON
Yuma County Cooperative Extension, University of Arizona, Yuma, AZ

CONTACT

Jiahuai Hu
epd@email.arizona.edu

This information has been reviewed by University faculty.

extension.arizona.edu/pubs/az1868-2021.pdf

Other titles from Arizona Cooperative Extension can be found at: extension.arizona.edu/pubs