Tracking Cotton Growth and Development

Randy Norton, Ph.D. Extension Agronomist The University of Arizona Safford, AZ

Outline

- Cotton phenology and development
- Review cotton developmental stages, timelines, and indices
- Review of 2020 crop status heat stress implications
 - End of season management
 - Irrigation termination

Recent PMN Presentation

http://www.plantmanagementnetwork.org/edce nter/seminars/cotton/GrowthDevelopment/

Privacy Policy | Copyright © 2020 Disclaimer | Contact Us

Tracking Cotton Crop Development

- Biological systems
 - Respond to heat (thermally sensitive)
 - Drives development
 - DOY insensitive to a certain extent
- Thermal units
 - Degree Days (DD60s)
 - Heat Units (HU)
 - Various definitions and calculations

HU Concept

HU Concept

ARIZONA

Sine curve used to model daily temperature then perform mathematical integration to determine area under curve bound by upper and lower thresholds COLLEGE OF AGRICULTURE AND LIFE SCIENCES **COOPERATIVE EXTENSION**

Annual HU Profile – Maricopa, AZ

Plant Growth and Development

- Extensive database began in the late 80's though the late 90's
 - JC Silvertooth
 - Growth timelines (mileposts of development)
 - Crop status (vegetative/reproductive)
- Continued to refine in the present
 - Norton
- Developing average (normal) baselines
- Well over 10,000 observations under arid and semi-arid, non-stressed conditions

COLLEGE OF AGRICULTURE AND LIFE SCIENCES

Crop Developmental Mileposts

Cotton Advisory

Crop Monitoring

Crop monitoring tools used to monitor crop status

- Finer detail for decision making
- Height to node ratios (HNR)
 - Crop Vigor
- Fruit retention (FR)
 - Fruit load (carbohydrate sink)
- Nodes above white flower (NAWF)
 - Progression through fruiting cycle

ARIZONA

COOPERATIVE EXTENSION

27 inches

Ratio of plant height (inches – cotyledons to terminal) to total nodes – cotyledon = 0 Example 18 nodes and 27 inches 27/18 = 1.5

Fruit Retention

Identify upper-most 1st position fresh bloom Count total number of nodes above to terminal NAWF = 8

Using Growth and Development Data

- Fertilizer Applications
 - Timing according to fruit load and vigor between PHS and PB
- Irrigation scheduling
 - NAWF as an indicator of crop stress
- PGR Applications
 - Feedback approach based upon crop conditions of fruit load and vigor
- Assessing the effects of heat stress on fruit load

2020 Heat Stress

Characterized by crop canopy temperature (CCT)

- P.W. Brown calculated value based on
 - Air temperature
 - Relative humidity
 - Vapor pressure deficit
- L1 vs. L2
 - L1 CCT > 82.4 < 86 °F
 - L2 CCT > 86 °F

Crop Canopy Temperature

ARIZONA

2020 Crop Canopy Temperatures

ARIZONA

COOPERATIVE EXTENSION

Heat Stress Observations

- Flowers tagged (312) on 15 July Evaluated 29 July
 - Approximately 80% retained
- Flowers tagged (312) on 29 July Evaluated 12 August
 - Approximately 3% retained
 - Mainly abnormal bolls

In-Field Observations

Implications of Heat Stress

- Crop had excellent fruit set prior most fields better than 60%
- Top third of plant many aborted and cavitated sites
- Evaluate extent of loss plant mapping
- Cautious about late season growth spurt may result in buggy whips
 - Possible PGR application to arrest growth
 - More difficult defoliation*

End of Season Monitoring

- Use of HU to predict boll maturation
- Assist in timing of defoliation
- Assist in determining final irrigation

Crop Monitoring - Irrigation Termination

- Identify last fruit intended for harvest
 - point of diminishing returns
 - occurrence of cut-out
 - consider variety type
- Consider...
 - Insect populations / pressure
 - Additional irrigation events
 - Additional fertilization events
 - More difficult to defoliate as temps decrease
 - Reduce fruit retention late season

Irrigation Termination Decision

- Identify last flower to be taken to harvest
- Determine the amount of time for that flower to mature into a harvestable boll
- Must provide sufficient soil water through fiber elongation phase (~600 HU ~21 days / Aug. and Sep.)

Boll Development and Maturation

Normal HU Accumulations

Late Season Heat Units

ARIZONA

COOPERATIVE EXTENSION

Boll Maturation Data

Irrigation Termination

- Scenario
 - Crop planted on 4/20
 - Last flower identified for harvest on 8/27
 - On average should mature on 9/25

Boll Maturation Data

Boll Maturation Data

Scenario – cont.

- Irrigation occurred on day of final flower identification – 8/27
- Water use for that period 8/27-9/25...
 - 6.05" water
 - Average soil will hold 2" plant available water (PAW) per foot
 - x 3 foot effective rooting depth
 - = 6 inches of water holding capacity
 - Irrigate @ 50% PAW or 3" depleted
 - Average water use would deplete 3" in 12 days
 - Final Irrigation on 9/7

Cotton Growth and Development

- Tracking allows for more accurate estimation of crop status
- Improves efficiency of inputs
 - Using a crop feedback approach
 - Better informed management decisions
- Improve economic efficiency of operation

