Sensor-Controlled Spot-Spraying Technology for Arizona Cotton

Pedro Andrade and Randy Norton, UA Extension Faculty

Smart spraying
The intelligent spraying system uses camera sensors to distinguish weeds from crops, ensuring more precision and more discriminate use of herbicides.

Bosch press release 07.11.2019. Bosch and BASF expand their cooperation for digital agriculture

October 2020 - 10th Annual Central Arizona Farmer Field Day
Sensor-Controlled Spot-Spraying Technology in Cotton
Pedro Andrade and Randy Norton, UA Extension Faculty

October 2020 - 10th Annual Central Arizona Farmer Field Day
Sensor-Controlled Spot-Spraying Technology in Cotton
Pedro Andrade and Randy Norton, UA Extension Faculty

How a WeedSeeker® sensor works

1. “Light emitting diodes” (LED’s) produce a combination of invisible infrared and visible red light which is projected onto the target approximately 700mm below the sensor.

2. The light reflected from the target is captured by a detector at the front of the sensor.

3. Sophisticated electronic circuits inside the sensor analyse the reflected light and determine when it matches the light reflected by green plants.

4. When green plant’s reflectance is identified, the sensor waits until the plant is under the spray nozzle and then triggers a fast-acting solenoid valve which sprays the plant.

McIntosh Distribution Tamworth. www.mcintoshdistribution.com.au

October 2020 - 10th Annual Central Arizona Farmer Field Day
Sensor-Controlled Spot-Spraying Technology in Cotton
Pedro Andrade and Randy Norton, UA Extension Faculty

2004 Agricultural Experiment Station Research Report.

Weed-IT hooded sprayer in Arizona cotton. Field performance testing during 2020 season. UA-MAC.
Sensor-Controlled Spot-Spraying Technology in Cotton
Pedro Andrade and Randy Norton, UA Extension Faculty

October 2020 - 10th Annual Central Arizona Farmer Field Day

- Improvements in sensitivity for weed detection through firmware algorithms ✔
- Improvements rate control (PWM) ✔

- Current field performance testing focused on generate information to guide adaptations needed to fit Arizona cotton farming systems
 - Hardware configurations (i.e. hood options)
 - Operational parameters (i.e. sensor height)
Preliminary testing – Safford Agricultural Center, September 2020
Sensor-Controlled Spot-Spraying Technology in Cotton
Pedro Andrade and Randy Norton, UA Extension Faculty

Arthur Radebaugh. *Closer Than We Think* series, 1958-1963

October 2020 - 10th Annual Central Arizona Farmer Field Day
Sensor-Controlled Spot-Spraying Technology in Cotton
Pedro Andrade and Randy Norton, UA Extension Faculty

1980’s Micro-computer
- 1.6 x 10^6 bits/s
- Increase the information processing capacity of individuals engaged in agriculture

October 2020 - 10th Annual Central Arizona Farmer Field Day

<table>
<thead>
<tr>
<th>Operation</th>
<th>Current energy use, joules per hectare</th>
<th>Possible energy savings, joules per hectare</th>
<th>Information handling energy, joules per hectare</th>
<th>Energy saved per unit of information handling energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractor transmission control</td>
<td>4 019</td>
<td>402</td>
<td>10</td>
<td>6.2</td>
</tr>
<tr>
<td>Traction wheelslip control</td>
<td>4 019</td>
<td>523</td>
<td>13</td>
<td>7.4</td>
</tr>
<tr>
<td>Irrigation water application</td>
<td>31 686</td>
<td>6 009</td>
<td>19</td>
<td>70</td>
</tr>
<tr>
<td>Fertilizer placement</td>
<td>11 238</td>
<td>4 487</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Control of tobacco curing</td>
<td>120 189</td>
<td>18 028</td>
<td>15</td>
<td>362.9</td>
</tr>
<tr>
<td>Cotton gin management</td>
<td>1 444</td>
<td>183</td>
<td>13</td>
<td>1.6</td>
</tr>
</tbody>
</table>

TABLE I. SUBSTITUTING INFORMATION FOR ENERGY: EFFICIENCY IMPROVEMENT EXAMPLES
We recognize the institutional and financial support provided to our work

Thank-you for your attention!!