Rhodes Grass: a New Forage Crop for the Low Desert

Oli Bachie

UCCE Agronomy Advisor, Imperial, Riverside and San Diego Counties Director, UCCE Imperial County

- ✓ Backgrounds
- ✓ Research @ DREC
- ✓ Yield & nutrition
- ✓ Other desirable features
- ✓ Summary

The 7th Annual New Technologies Workshop for Field Crops. Wednesday, June 3rd, 2020 . The UA CE (via zoom)

University of **California** Agriculture and Natural Resources

ALTHY FOOD SYSTEMS I HEALTHY ENVIRONMENTS I HEALTHY COMMUNITIES I HEALTHY CALIFORNIANS

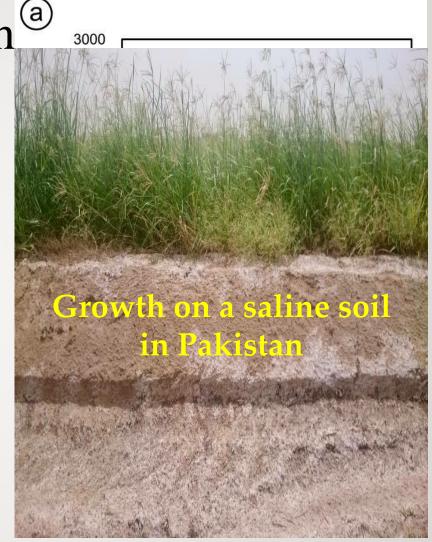
THE RHODES GRASS & AGRONOMIC FEATURES

- Is Chloris gayana Kunth, C. abyssinica (synonym)
- Is a C4 perennial grass native to Africa, but, widespread in tropical & subtropical countries.
- Very closely related to Bermuda grass (C. dactylon)

Morphology

 RG stems are tender, very leafy & spreads through stolons (Stoloniferous) & highly productive nature

- RG is valued for its (1) ability to set seed, (2) relative ease of establishment & ability to cover ground, (3) tolerance for drought, light frost, & soil salinity
 Keftasa 2006.
 - In the Arabian Peninsula, RG varieties produced significantly higher dry mass than alfalfa cultivars


Nadaf et al., 2014

Salt tolerance of RG

Possession of salt glands is th mechanism by which RG tolerates salinity problems (can secrete both Na+ & K+) through its leaves

Kobayashi et al., 2007

the ability to secrete Na+ is greater than that of K+ secretion

THE RESEARCH @ DREC

Probably the first of its kind in CA on RG

> We tested 2 varieties;

- ✓ Gulfcut (GF) & Recliner (RL)
- Selected Seeds of Australia states that the previous RG were wild selections & inconsistent in feed bunks.
- The varieties were latter hybridized & optimized as fine stemmed leafy plant of aggressive stoloniferous growth habits, salt tolerance & high dry matter yields.

Objectives of the trial

- Evaluate adaptability under the dry hot irrigated conditions of the low desert, &
- test forage yield and nutrition value of the two varieties

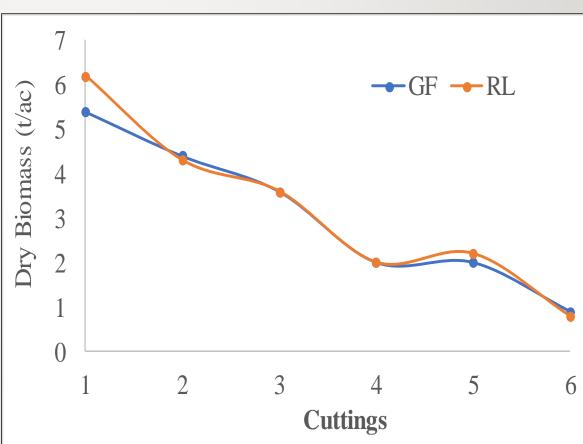
Plot layouts & Planting

Plots laid out in RCBD with 4 replications
18 lbs of seeds/ ac (broadcasting)

> sprinkler irrigation, then shifted to flood irrigation

Fertilization;

 ✓ 120 lb/ac N (pre-plant) & 50 lbs/ac N (subsequent cuttings)
 ✓ Pre-plant PK at 40-50 kg/ac

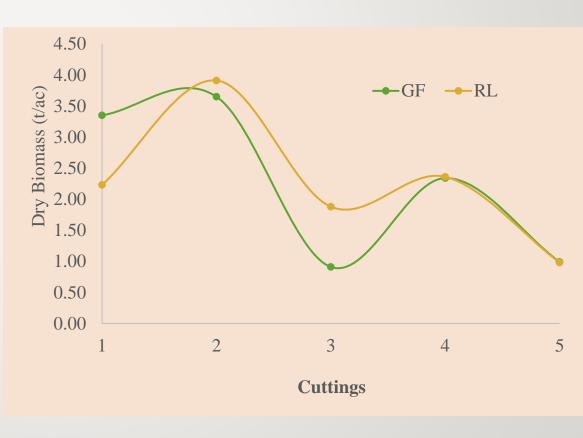

Harvested/cut when crop develops 5 -10% flower heads

First year biomass (t/ac) – 6 cuttings

Variety	5-May	21-Jun	28-Jul	29-Aug	10-Oct	12-Dec	Total
GF	5.4a	4.5a	3.6a	2.0a	2.0a	0.9a	18.4
RL	6.2a	4.26 a	3.61a	2.0a	2.0a	0.8b	19.1
Pr>F	0.34	0.73	0.94	0.95	0.46	0.05	

- > no significant differences between the varieties in hay production at any of the cuttings
- Biomass yield declined throughout the cutting cycles

Annual yield ranged from 18 to 19 t/ac (see table)


> **University** of **California** Agriculture and Natural Resources

HEALTHY FOOD SYSTEMS I HEALTHY ENVIRONMENTS I HEALTHY COMMUNITIES I HEALTHY CALIFORNIANS

Variety	24-May	12-Jul	31-Aug	1-Nov	12-Dec	Total
GF	3.4a	3.7a	0.9b	2.3a	1.0a	11.2
RL	2.2a	3.9a	1.9a	2.4a	1.0a	11.4
Pr>F	0.43	0.66	0.01	0.94	0.96	

Second year biomass (t/ac) – 5 cuttings

- ✓ Slightly variable biomass yielding patters for the 2nd year trial
- Similar trend of yield decline over cutting cycles
- ✓ no significant differences between the varieties in biomass production
- ✓ Total annual yield was ~ 11t/ac (5 cuttings)

Graphical representation (dry biomass

production)

University of **California** Agriculture and Natural Resources

HEALTHY FOOD SYSTEMS I HEALTHY ENVIRONMENTS I HEALTHY COMMUNITIES I HEALTHY CALIFORNIANS

Forage Crop hay yield comparison

Сгор	2016 yield
	(t/ac)
Alfalfa hay	7.19
Bermuda grass hay	7.89
Klein grass hay	10.0
Sudan grass hay	5.66
Rhodes grass	11-19

Source: 2016 IV Ag Crops & LS Report

Nutritional values from three samplings

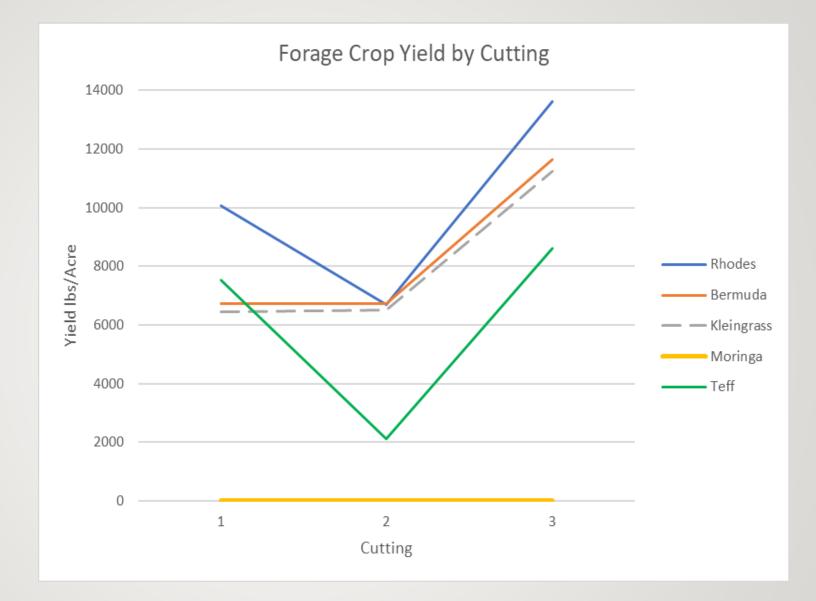
Variety	CP%	AFD	dNDF	Ash	dNDF48	dNDF30	TDN	
RL	14.1 ^a	37.5 ^a	65.4 ^a	9.9 ^a	38.1 ^a	23.5 ^a	59.8 ^a	
GF	14.2 ^a	37.8 ^a	65.0 ^a	9.7 ^a	37.5 ^a	22.4 ^a	59.5 ^a	
Pr>F	0.94	0.62	0.74	0.63	0.57	0.24	0.64	
		Second cutting						
RL	12.2 ^a	39.73 ^a	67.2 ^a	10.1 ^a	40.8 ^a	28.7 ^a	63.2 ^a	
GF	12.1 ^a	41.2 ^a	68.8 ^a	10.0 ^a	41.6 ^a	28.9 ^a	61.8 ^a	
Pr>F	0.94	0.41	0.4	0.74	0.25	0.71	0.26	
		Third cutting						
RL	12.4 ^a	38.9 ^a	69.4 ^a	10.1 ^a	40.0 ^a	28.9 ^a	59.2 ^a	
GF	13.4 ^a	38.4 ^a	67.5 ^a	10.1 ^a	40.2 ^a	29.5 ^a	62.1 ^a	
Pr>F	0.24	0.69	0.32	0.93	0.68	0.62	0.16	

Means in each column followed by the same letter under each cutting is not significantly different from each other.

University of **California** Agriculture and Natural Resources

ALTHY FOOD SYSTEMS I HEALTHY ENVIRONMENTS I HEALTHY COMMUNITIES I HEALTHY CALIFORNIANS

Forage nutrient component comparisons


Сгор	СР	TDN	ADF	NDF
Alfalfa	17-29	50-56	26-35	40-50
Bermuda grass	8-12	43	32-43	70-78
Sorghum / Sudan grass	8-15	-	29-40	55-65
Corn Silage	6-9	70	28-43	51-68
Wheat straw	4	-	54	85
Rhodes grass	12-14	59-63	37-41	65-69

Source: Compared to nutrition information ,Putnam (ag practices for forage quality)

University of **California** Agriculture and Natural Resources

EALTHY FOOD SYSTEMS I HEALTHY ENVIRONMENTS I HEALTHY COMMUNITIES I HEALTHY CALIFORNIANS

ONGOING TRIAL

University of **California** Agriculture and Natural Resources

ALTHY FOOD SYSTEMS | HEALTHY ENVIRONMENTS | HEALTHY COMMUNITIES | HEALTHY CALIFORNIANS

Other desirable Characteristics

> Tolerates mechanical damages

Crop after recovery from damage (bottom)

University of **California** Agriculture and Natural Resources

Suitability for Pasture (not tested here)

- Suitable for rainfed & irrigated systems
- Highly desirable for direct pasturing, palatable
- Suitable for all animals (Dairy, Beef, Horses, Goats & Sheep)

University of California Agriculture and Natural Resources

Pest Management

- No incidences of insect pest or pathogens detected at our research field
- > Weeds were not a problem.
 - ✓ It was strong competent crop
 - ✓ But, may need BL weed control at establishment

Summary (strengths)

- Easy to establish, high salt & stress tolerant
 Para posts or discusses
- Rare pests or diseases
- Well adapts to the low desert conditions & produces high biomass of good nutritive quality
 RG can be an alternative forage crop for the low desert & even beyond
- Is already adopted by some growers for commercial production and export
- Future work will focus on resource use & estimation of production costs & prepare RH production guideline

Acknowledgments

This research at DREC was conducted with funding support provided by "Selected Seeds" of Australia. I also thank the support provided by DREC and UCCE Imperial County staff for field maintenance and data collection

Contact: obachie@ucanr.edu

More information IN Proceedings, 2019 Western Alfalfa & Forage Symposium. Pages 123-131

University of **California** Agriculture and Natural Resources