

College of Agriculture and Life Sciences

COOPERATIVE EXTENSION

Resistant Palmer Amaranth in Arizona

Blase Evancho Assistant-in-Extension Field Crops

2021 Winter Field Crops Clinic 1/26/2021

Palmer amaranth (Carelessweed, Pigweed)

Robust dioecious annual reproduces by seed. Seed production = 600,000 to 1.6 million seeds per large female. An infestation can produce 375 million seeds per foot of crop row Long-term seedbank longevity unknown, but lost 85% viability after 3 years.

> Palmer amaranth seeds

Photo credit: Bill McCloskey, University of Arizona (above & right)

Palmer amaranth is dioecious - obligate outcrosser

Female Palmer amaranth flowers

> Photo credits: Bill McCloskey, University of Arizona

Glyphosate resistance can move in pollen and seed!

Female Palmer amaranth flowers

> Photo credits: Bill McCloskey, University of Arizona

Palmer Amaranth & ivyleaf morningglory competition with cotton (2 leaf) following simultaneous emergence

Photo credit: Bill McCloskey, University of Arizona (above)

Palmer Amaranth – Rapid Growth (C₄)

Photo credit: Bill McCloskey, University of Arizona (above)

Rapid growth rate

- C₄ photosynthesis (uses all available light)
- >80 μ mol CO₂ m² s⁻¹ compared to 35 μ mol CO₂ m² s⁻¹ for cotton (Photosynthesis = 2.3 x cotton)
- High temperature growth optimum
- Greater water use efficiency

In-Field Movement of Glyphosate-Resistant Palmer Amaranth and its Impact on Cotton Lint Yield: Evidence Supporting a Zero-Threshold Strategy. Norsworthy et al., Weed Science 2014 62:237-249

- Year 1 (2008)
 - 20,000 seed/1 m² circle (February)
 - Palmer infested 0.56% of field area
 - No yield loss

In-Field Movement of Glyphosate-Resistant Palmer Amaranth and its Impact on Cotton Lint Yield: Evidence Supporting a Zero-Threshold Strategy. Norsworth et al. Weed Science 2014 62:237-249

- Year 1 (2008)
 - 20,000 seed/1 m² circle (February)
 - Palmer infested 0.56% of field area
 - No yield loss
- Year 2 (2009)
 - Palmer infested 20% of field area
 - Lint yield reduced 42 lb/A

Photo credit: Blase Evancho, University of Arizona

In-Field Movement of Glyphosate-Resistant Palmer Amaranth and its Impact on Cotton Lint Yield: Evidence Supporting a Zero-Threshold Strategy. Norsworth et al. Weed Science 2014 62:237-249

• Year 1 (2008)

- 20,000 seed/1 m² circle (February)
- Palmer infested 0.56% of field area
- No yield loss
- Year 2 (2009)
 - Palmer infested 20% of field area
 - Lint yield reduced 42 lb/A
- Year 3 (2010)
 - Palmer infested 95 to 100% of field
 - No lint yield/field was not physically harvestable

Tactics that may control and delay or avoid developing herbicide resistant weeds

Herbicides		Mechanical		Cultural
Multiple herbicides with different mechanisms of action		Tillage		Crop rotation
	Mixes		*Pre-plant*	Plant population
	Sequences		In-crop cultivation	Row spacing
	Across seasons		In-row weeding	Planting date
			Post-harvest	Fertilizer placement
		Har see	nd-rogueing before d set	Cover crops

Prowl H₂0 (0.95 lb/A) applied PPI (field cultivator, listed, mulched, bed-shaped)

Photo credits: Bill McCloskey, University of Arizona

PREE- & POST-Emergence Selective Cotton Herbicides (use with appropriate traits)

Preplant – Residual Herbicides	Early POST – Mid POST (sequential sprays) Selective Chemistries (with appropriate varieties)		
*Pendimethalin	Dual Magnum (metolachlor) Warrant (acetochlor) Outlook (dimethenamid-P)		
*Trifluralin	Pendimethalin (microencapsulated H2O formulations)		
*Prometryn	Glyphosate		
*Diuron	Glufosinate (Liberty, Interline)		
*Solicam	2,4-D-choline (Enlist One) 2,4-D-choline+glyphosate (Enlist Duo)		
*Rates depend on	Dicamba (Engenia, Xtendimax)		
soil type – consult labels	Pyrithiobac (Staple LX), Trifloxysulfuron (Envoke)		
	Graminicides: fluazifop, sethoxydim, clethodim (Fusilade, Poast, Select)		

Cotton Post-Direct and Layby Herbicides

Layby PD broadcast	PREE soil activity	Foliar Herbicide type/activity	General Crop Rotation intervals
Prowl H ₂ O (pendimethalin)	Yes	None	Medium-Long
Prometryn	Yes	Contact	Short
Diuron	Yes	Contact	Long
Goal, GoalTender (oxyfluorfen)	Yes	Contact	Long-small grains, Short labeled crops
Chateau (flumioxazin)	YES	Contact	Short with tillage
Fierce (flumioxazin + pyroxasulfone)	YES	Contact	Long
Aim (carfentrazone)	NO	Contact	None-registered crops
ET (pyraflufen)	NO	Contact	Short (30 days)

Mid-Post & Layby Herbicides (non-selective)

Post-Directed So Herbicides Activ		Mid-POST: 6 to 15 inches tall Layby: 15 to 24 inches tall or greater		
Aim NO		1 to 1.6 fl. oz./A – do not spray green stems Post-direct at crop base or use shields @ 6-12" cotton		
Chateau Yes		1-2 oz./A for post-direct burndown 2 oz./A @ layby on all soil types		
Diuron	Yes	6-8" – 0.4 lb. a.i./A (0.4 qt./A) 8-12" – 0.6 lb. a.i./A >12" – 0.8-1.2 to 0.8-1.6 lb. ai./A based on soil type		
ET	NO	0.5 to 1 fl. oz./A – do not spray green stems Post-direct at crop base or use shields @ 6-12" cotto		
Oxyfluorfen Yes		>6-8" – 0.5 lb. a.i./A; can apply 2 times/season		
Prometryn	Yes	>6" - 0.5-0.65 lb. a.i./A >12" - 1.2-1.6 lb. a.i./A on sandy loam soils >12" - 1.6 lb. a.i./A on loam and heavier soils		
Consider tank-mixes		PPO inhibitors (Aim, ET) + prometryn or diuron Glyphosate + either prometryn, diuron, or glufosinate		

Hang Evancio, William McCloskey, Noom Per, Kevin Cattery, University of Atricoa, "BASF Palmer amazanth (Palmer, carelies weed or pigweed) (Fig. 1) is a plant native to the southwest descrit that readily evolves herbicide resistance. Palmer has developed resistance to multiple herbicide mechanisms of action. Currently, Arizona Palmer is only resistance to glyphostate. Resistant populations are found in all major productions areas affecting multiple crops.

Cotton production institution in the institution of the second sequence of the second second sequence of the second s

PREPLANT

 Peplant residual herkicides. They must be incorporated into the soil to be effective, either with varier (paradimethalia) or mechanically (paradimethalia) and triffuralia). EARLY SEASON - AFter Cotton Emergence.
Rotts chamistrias with different Modes of Action (MoA) when graying over-da-top and coubine chamistrias including gluffysingte, the auxin herkicides discursts and 2.4. D. Tasse can be task mixed with meisduals (e.g., acetochler, dimetheramil-P, metal-lacker, or pendimethalian (Povol H.O'')) a fringition vater can be used to incorporate the herbicides (e.g., flood or center pirot spirakler systems).

 Do not spray water or temperature stressed weeds.
LATE POST
Following early season postemergence herbicide applications after irrigation and emergence of new weeds. Repeat application to weeds escapes from early season control.
Topical application of chemistries as in early season

A PDF of this publication is available on-line at:

management. Post-Direct and Hooded Sprayer Applications - Consider burn-down type of chemistries - Aim⁴, Chateau⁴, ET⁴, Goal Tender⁶ - as well as selective chemistries (e.g., gluforinate, glyphoste, dicamba, 2,4-D). Tillage - Use cultivation in combination with chemical weed

1 renort⁻ - as well as selective chemistries (e.g., guitosintis, gipphosta, dichama, 2,4-D). Tillage – Use cultivation in combination with chemical weed control, keep in mind that illage tends to deactivate residual herbicide.

to deactivate Any findings, recommendations, services, or organizations that an mentioned, shown, or indirectly impled in this publication do not imply endorsement by the University of Anicro are the ISDN

LATEV - After cotton achieves advantageous height over weeks and up to time of you chours. • Sanithion - Remove week escapes to stop seed production this includes hand roughing. • Tullage - Spray residual herbicides. This tack is useful if there is a marginal plant population or gaps in the crop cancey. Use a diversity of chouristris including residual herbicides (ag. pendimetahian, diuron, prometry) tank mixed with postmergence herbicides If seeded. EXD OF SEASON SANITATION • Ramove all word escapes • Clean equipment, aspecially larverden, between field • Control Falture amaranth in surrounding areas – irrigation

 Control Palmer amaranth in surrounding areas – irrigation ditches, fence lines, and other waste areas.
Rotate crops

HERBICIDE APPLICATION STEWARDSHIP Read and strictly adhere to all herbicide labels.

Figure 1. (a) Mature Palmer amaranth, (b) Male flower with yellow anthe sacs. (c) Female flower. Photo credit Bill McCloskey

Crop Rotation

Figure 2. Five steps (chemistry (Mod)) rotation, tillage, sanitation, cleaning equipment and crop rotation) of reducing the threat of resistant Palmer amaranth. References:

Norsworthy et al. 2012. Best Practices for Reducing Herbicide Resistance. Weed Science, Special Issue: 31-62. Norsworth et al.: 2014. In-Field Movement of Glvphosate-Resistant Palme

Amaranh and its Impact on Cotton Lint Yield Evidence Supporting a Zero-Threshold Strategy, Weed Science 62:237-249

Resistant Palmer Task Force

- Produce & share information on herbicide resistant Palmer amaranth to attempt to slow and contain pest.
- Monitor and inventory this pest in our agricultural landscape.
- Incentivize IPM tools that will make the largest impacts.

Thank you to all collaborators and supporters

