IMPROVING ALFALFA HAY YIELD WITH APPLICATION OF BALANCED P & K FERTILIZERS

Worku Burayu and Ayman Mostafa The university of Arizona, Cooperative Extension

> Field Crops "Clinics" (Virtual) Wednesday, January 27, 2021 – 10:00 AM – 2:30 PM

THE LOW DESERT ARIZONA

- Hot summers, warm winters, dry climate,
- Little to no precipitation
- Soils,
- N from N-fixing nodules.
- K is assumed to be abundantly available
- Low to medium Olsen-P
- Variety nondormant, Very N, Extremely N
- Intensive production system
- Frequent alfalfa harvesting, may lead to

- Enabling crop growth throughout the year.
- Fully irrigated, Surface flood irrigation.
- Alkaline and calcareous
- N fertilizer is generally not applied.
- K not typically applied to crops.
- Phosphate fertilizer commonly applied.
- fall dormancy class 8, 9, 10.
- Average of 8.4 tons/acre (6 to 10 cutting).
- Reduction in yield and stand persistence

PRESSING ISSUE

Stand longevity issue,

Yield, quality, autotoxicity issues,

Excessive use of single nutrient, salts

Costly stand re-establishment,

Increment in Cost of fertilizers,

Environmental issue Vs. Growers interest,

No or limited information on balanced nutrients

OBJECTIVES

• Determine the yield response of irrigated alfalfa to various blend of P and K fertilizers,

• Assess the effect on soil and plant test P and K levels where K is not lacking

METHODOLOGIES (MAC & TUBE)

Sources of fertilizers: MAP (11-52-0) KCL (0-0-60) Rates (lb acre⁻¹) MAP (0, 192, 240); P₂O₅ (0, 100, 125) KCL (0, 167, 500); K₂O (0, 100, 300) Design: Factorial in RCBD.

Soil Standard Test	Method	MAC	Tube	Units	Levels
рН	1:1	8.2	9	SU	н
Potassium (K)	NH4OAc (pH8.5)	320	250	ррт	Н
Nitrate-N (No ₃ -N)	cd-Reduction	1.1	3.9	ррт	L
Phosphate-P (Po ₄ -P)	Olsen	6.4	7.8	ррт	М
Sand	Hydrometer	58	72	%	
Classification	Hydrometer	SCL	SL		

Methodologies (Cont.)

RESULTS

Table 1. Hay yield under the influence of three P fertilization rates on sandy clay loam soil, in 2018 and 2019 at MAC. The data were averaged over three K fertilization rates and four replicates.

P ₂ O ₅ (MAP) [†]	January	Mai	rch	April	May	Ju	ine	July		August	September	Total
Lbs. acre ⁻¹		2018 (Hay Yield, tons acre ⁻¹)										
0 (0)	1.24B ^{††}	1.62	2B	1.94B	2.36B	2.6	59A	1.631	3	2.15A	2.19B	15.82B
100 (192)	1.31B	1.8:	5A	2.08A	2.49A	2.9	97A	1.934	Ą	2.24A	2.33A	17.20A
125 (240)	1.46A	1.8	3A	2.10A	2.50A	2.8	38A	1.76A	В	2.33A	2.31A	17.22A
Average	1.34	1.7	/8	2.04	2.45	2.	<mark>85</mark>	1.78		2.24	2.27	16.75
$P_2O_5(MAP)^{\dagger}$	N	larch		April	May		J	une		July	Aug	Total
Lbs. acre ⁻¹					2	2019 (I	Hay Yi	ield, tons	acre⁻	¹)		
0 (0)		1.51B [†]	·†	2.22A	2	.18A		1.85A		1.67B	1.54A	10.98B
100 (192)		1.74A		2.32A	A 2.30A			1.89A		1.88A	1.61A	11.74A
125 (240)		1.83A		2.36A	2	.32A		1.89A		1.85A	1.64A	11.88A
Average		1.6	9	2.30		2.27		1.88		1.8	1.60	11.53

^{††} Within a column in the same year, values followed by the same letter are not significantly different at 0.05 level of probability (Student's t-test).

P_2O_5 †	February	March	April	May	June	July	Total
lb acre ⁻¹			2019	Hay Yield, t a ⁻¹			
0	1.37C	1.79B	1.78A	1.63A	1.86B	0.91A	9.32B
100	2.36B	2.41A	2.04A	1.75A	2.41A	1.12A	12.08A
125	3.01A	2.72A	1.99A	1.67A	2.35A	1.01A	12.75A
P_2O_5 †	Dec	Feb	Apr	May		June	Total
lb acre ⁻¹			2020	Hay Yield, t a ⁻¹			
0	1.25B	1.97B	4.17E	3 2.77B		1.01B	11.17B
100	1.69A	2.59A	5.71A	B 3.62AI	3	1.40A	15.02A
125	1.85A	2.91A	6.84A	4.42A		1.53A	17.55A

Table 2. Hay yield under the influence of three P fertilization rates on sandy loam soil, in 2019 and 2020. The data were averaged over three K fertilization rates and three replicates.

^{††} Within a column in the same year, values followed by the same letter are not significantly different at 0.05 level of probability (Student's t-test).

Table 3. Alfalfa hay yield as affected by various combinations of p and k fertilization rates during two growing seasons (2018 & 2019) on a sandy clay loam at mac. data are the means of four replicates

P_2O_5	K ₂ 0	2018	2019	Average			
lb acre ⁻¹ yr ⁻¹		t acre ⁻¹					
0	0	14.98c [†]	10.72c	12.85c			
0	100	16.11bc	11.21bc	13.66bc			
0	300	16.37abc	11.00bc	13.69bc			
100	0	16.96ab	16.96ab 11.96ab				
100	100	17.24ab	11.55abc	14.40ab			
100	300	17.40ab	11.69ab	14.55ab			
125	0	16.93ab	11.46abc	14.20ab			
125	100	17.56a	12.23a	14.90a			
125	300	17.20ab	11.94ab	14.57ab			

[†] Within a column in the same year, values followed by the same letter are not significantly different at 0.05 level of probability (Student's t-test).

Table 4. Alfalfa hay yield as affected by various combinations of P and K fertilization rates during two growing seasons (2019 & 2020) on a sandy loam soil. Data are the means of three replicates.

P_2O_5	K ₂ 0	2019	2020	Average			
lb acre ⁻¹ yr ⁻¹		t acre ⁻¹					
0	0	8.75c	8.75c 11.17d				
0	100	8.82bc	11.72d	10.27d			
0	300	10.40bc	10.61d	10.51d			
100	0	12.17ab	12.17ab 13.05cd				
100	100	13.33ab	14.13abcd	13.73bc			
100	300	11.31ab	18.42ab	14.86ab			
125	0	12.09ab	16.87abc	14.48b			
125	100	13.42a	20.58a	17.00a			
125	300	13.07ab	15.55bcd	14.31bc			

[†] Within a column in the same year and average of the year, values followed by the same letter are not significantly different at 0.05 level of probability (Student's t-test).

Combination of P and K Increased Yield(average of two years)

BALANCED FERTILITY SYNERGETIC EFFECT (AVERAGE OF TWO YEARS)

Percent Yield Increase								
		MAC		TUBE				
Yield Advantage	2018	2019	Average	2019	2020	Average		
PK over Unfertilized (PK > No)	14.77	12.35	13.50	34.80	35.83	35.32		
PK over K alone (PK > K)	8.30	8.42	8.35	34.29	40.76	37.53		
PK over P alone (PK > P)	3.60	6.21	4.95	9.92	11.29	10.61		
PK over aver (P + K) {PK > (P+K)/2)}	5.92	7.28	6.60	22.11	26.02	24.07		

P & K fertilizers effect on Olsen-P and PO4-P

SOIL

PLANT

Figure. Olsen-P and plant-P (PO4-P) significantly and positively impacted Alfalfa hay yield.

SUMMARY

- P has significant, while K has slight effect on yield individually,
- P & K interaction has synergetic effects on yield,
- Highest fertilizer application did not result in **significantly** increased yield,
- Balanced PK produced the highest productivity,
- With increasing fertilizer costs, a conservative approach to identifying fertilizer application rates may be more profitable.
- Additional research and detail economic analysis required.

References

- 1. Barbarick, K.A. 1985. Potassium fertilization of alfalfa on a soil high in potassium. Agron. J. 77:442–445.
- 2. Berg, W.K., S.M. Cunningham, S.M. Brouder, B.C. Joern, K.D. Johnson, J. Santini, and J.J. Volenec. 2007. The long-term impact of phosphorous and potassium fertilization on alfalfa yield and yield components. Crop Sci. 47:2198–2209.
- Burayu, W., M. J. Ottman, and A.M. Mostafa 2016. Phosphorus fertilizer sources and rates effect on irrigated alfalfa in Arizona. Resilience Emerging from Scarcity and Abundance. 2016 ASA, CSSA and SSSA International Annual Meetings. https://scisoc.confex.com/crops/2016am/webprogram/Paper99961.html
- 4. Lissbrant, S., S.M. Brouder, S.M. Cunninghm, and J.J. Volenec. 2010. Identification of fertility regimes that enhance long-term productivity of alfalfa using cluster analysis. Agron. J. 102:580–591.
- Mostafa, A., and W. Burayu. 2020. Improving Alfalfa Yield with Application of Balanced Fertilizers. University of Arizona Cooperative Extension Service and Agricultural Experiment Station Bulletin AZ1833-2020. <u>https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1833-2020.pdf</u>
- 6. M. Brouder, B. C. Joern, K. D. Johnson, J. Santini, and J.J. Volenec. 2005. Influence of phosphorus and potassium on alfalfa yield and yield components. Crop Sci. 45: 297-304.
- Ottman, M.J., J. Rovey, A.M. Mostafa, and W. Burayu. 2015. Phosphorus fertilizer rate effect on alfalfa yield and soil test P, Buckeye, AZ 2014. University of Arizona Cooperative Extension Service and Agricultural Experiment Station Bulletin AZ1672-2015. https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1672-2015.pdf

