Impacts of P & K Fertilizers Blends on Arizona Alfalfa Hay Yield

Worku Burayu and Ayman Mostafa The University of Arizona-Cooperative Extension

Field Crops Clinic Buckeye, AZ January 6th, 2020

THE UNIVERSITY OF ARIZONA Cooperative Extension Field Crops

Alfalfa, Medicago sativa: Importance

U.S.A (USDA's NASS, 2018):

- Harvested acres 16.60 millions
- Production 52.6 million tons
- Average yield 3.2 tons/acre
- Average price, \$175 per ton
- Valued at over \$9.2 billion,

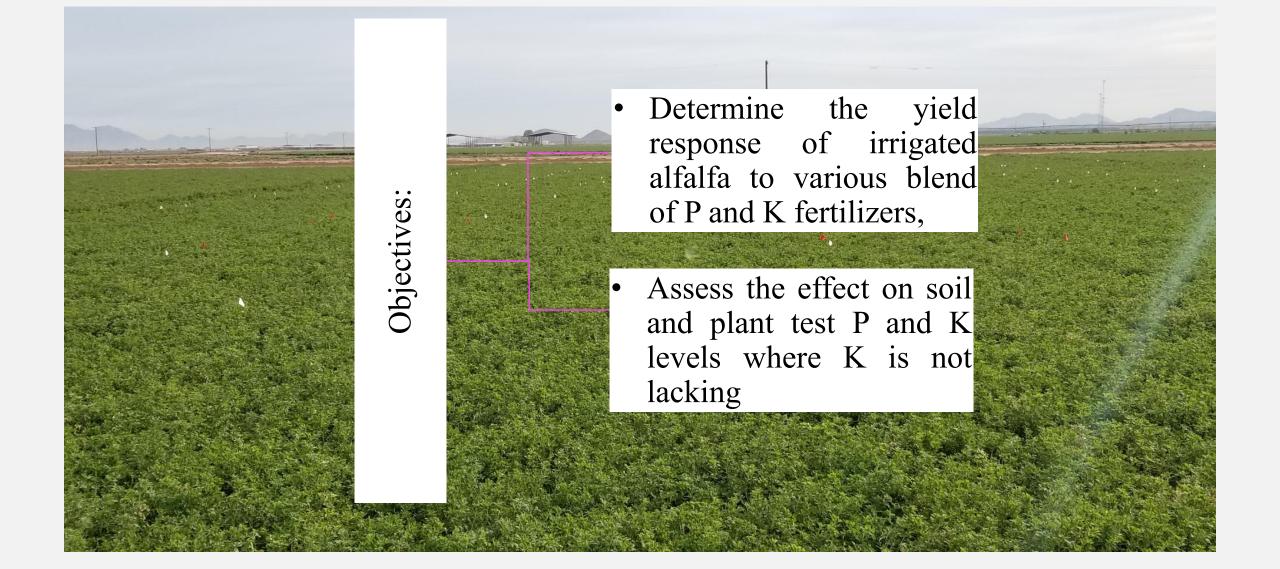
Arizona (USDA's NASS, 2018):

- Harvested acres 260,000 (1.6%)
- Production 2.16 million tons (~13%)
- Average yield 8.3 tons/acre (>62%)
- Price per ton \$209
- Valued at over \$451 million

Production and productivity

- Main variety, non-dormant in fall,
- Multiple harvests per year,
- High productivity,
- Cutting cycle,
- Alfalfa stand life,
- Intensive production system,
- Aging associated problems,
- Require replacement,

- Production continuity.
- 6 to 10 cuttings a year.
- Average of 8.4 tons/acre.
- 28 to 32 days schedule.
- > 3 years.
- Remove various resources.
- Affect yield, quality, autotoxicity.
- High establishment cost.


Pressing Issue

- Alfalfa stand loss (stand longevity issue),
- Yield reduction issue,
- Costly stand re-establishment,
- Excessive use of phosphorus & other resources,
- Increment in Cost of fertilizer,
- Environmental issue Vs. Growers interest (Market value)

Make it crucial to conduct study on balanced fertilizer management.

Objectives

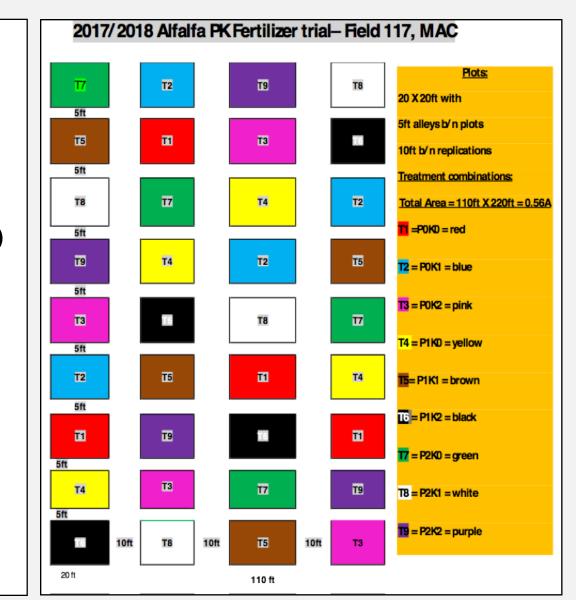
Materials and Methods (MAC)

Sources of fertilizers:

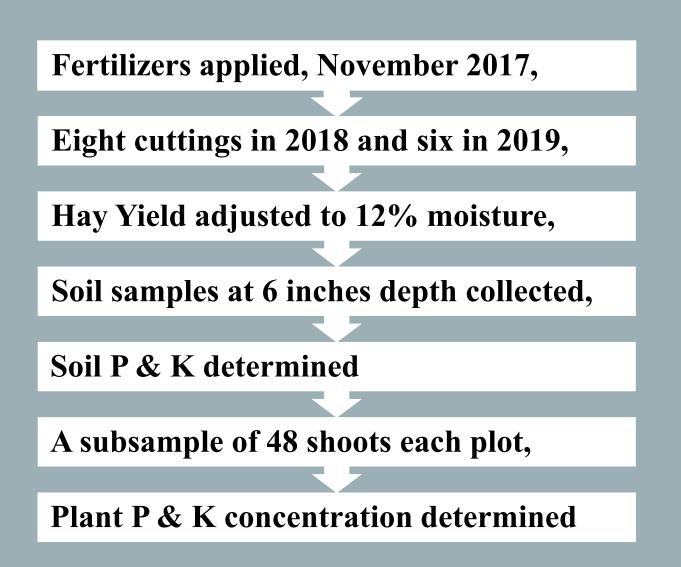
- MAP (11-52-0)
- KCL (0-0-60)

Rates (lb acre⁻¹)

- MAP (0, 192, 240); P₂O₅ (0, 100, 125)
- KCL (0, 167, 500); K₂O (0, 100, 300)

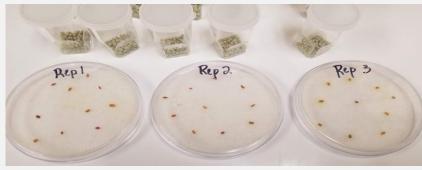

1.1

8.2


Design: Factorial in RCBD. Plot area = 400 ft², 5 ft b/n plots and 10 ft b/n replications.

Soil Analysis:

- Texture Sandy Clay loam
- K (ppm): 320
- Na (ppm): 250
- Olsen-P (ppm): 6.6
- Nitrate-N (ppm):
- pH:


Procedures

2019 Fertilizer Trial (Tube Trial)

P Fertilizer Increased Yield (2018)

Table 1. Influence of P fertilization on alfalfa hay yield at MAC, Arizona.

P ₂ O ₅ (MAP) [†]	January	March	April	May	June	July	August	September	Total
<u>Lbs. acre⁻¹</u>	Hay Yield, tons acre ⁻¹								
0 (0)	I.24B ^{††}	I.62B	I.94B	2.36B	2.69A	I.63B	2.15A	2.19B	I 5.82B
100 (192)	1.31B	I.85A	2.08A	2.49A	2.97A	1.93A	2.24A	2.33A	17.20A
125 (240)	I.46A	I.88A	2.10A	2.50A	2.88A	I.76AB	2.33A	2.31A	17.22A

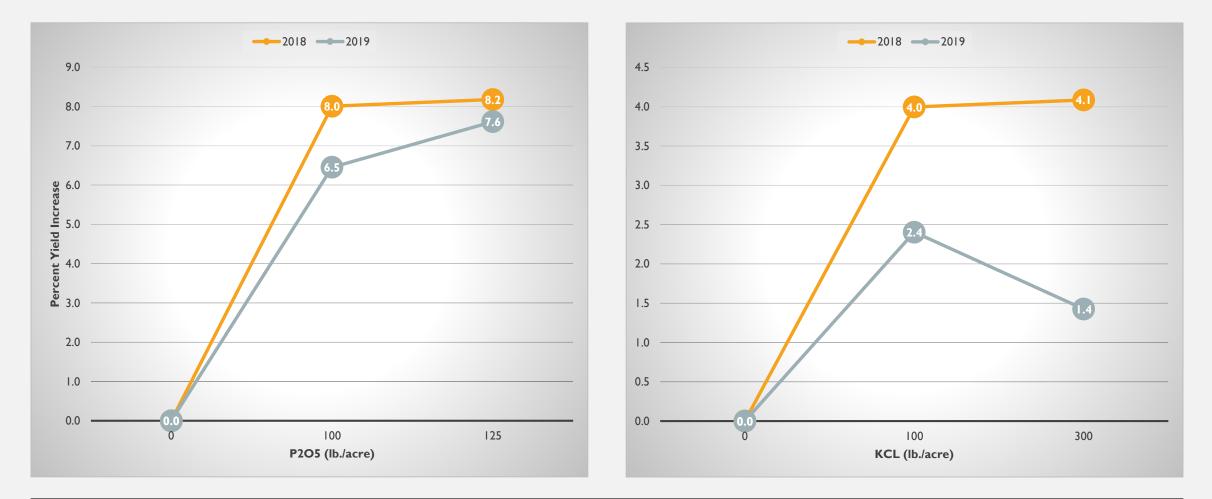
[†] Sources of fertilizer: MAP-monoammonium phosphate (11-52-0).

^{††} Within a column, values followed by the same letters are not significantly different at 0.05 level of probability.

The benefit of phosphorus fertilizer was realized in all cuttings. No difference was detected between the rates of 100 (192) and 125 (240) lbs. acre⁻¹, after the first January cuttings.

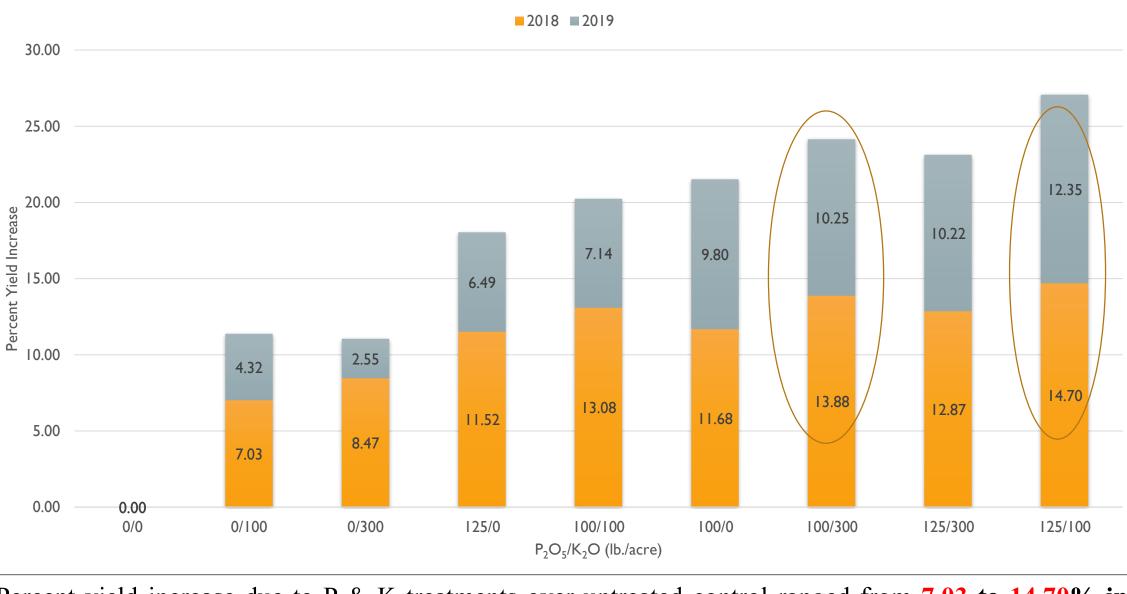
P Fertilizer Increased Yield (2019)

Table 2. P fertilization effect on alfalfa yield at MAC, Arizona.


P ₂ O ₅ (MAP) [†]	March	April	May	June	July	Aug	Total
Lbs. acre ⁻¹	Hay Yield, tons ha ⁻¹						
0 (0)	$1.51B^{\dagger\dagger}$	2.22A	2.18A	1.85A	1.67B	1.54A	10.98B
100 (192)	1.74A	2.32A	2.30A	1.89A	1.88A	1.61A	11.74A
125 (240)	1.83A	2.36A	2.32A	1.89A	1.85A	1.64A	11.88A

[†] Sources of fertilizer: MAP-monoammonium phosphate (11-52-0).

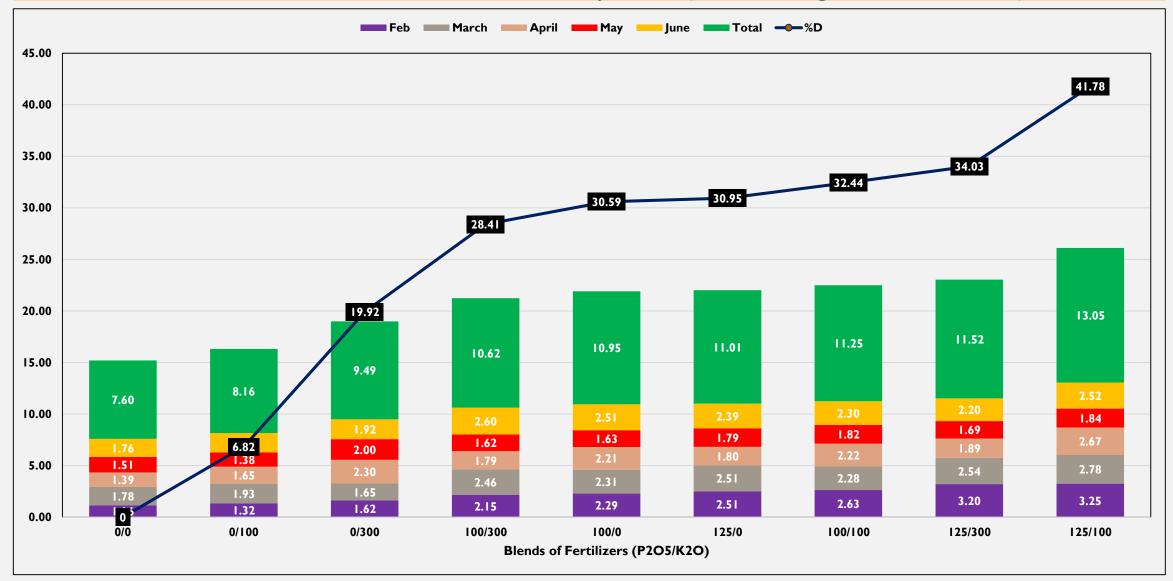
^{††} Within a column, values followed by the same letters are not significantly different at 0.05 level of probability.


The benefit of phosphorus fertilizer was realized in all cuttings. No difference was detected between the rates of 100 (192) and 125 (240) lbs. acre⁻¹

Individually P and K increased yield (MAC)

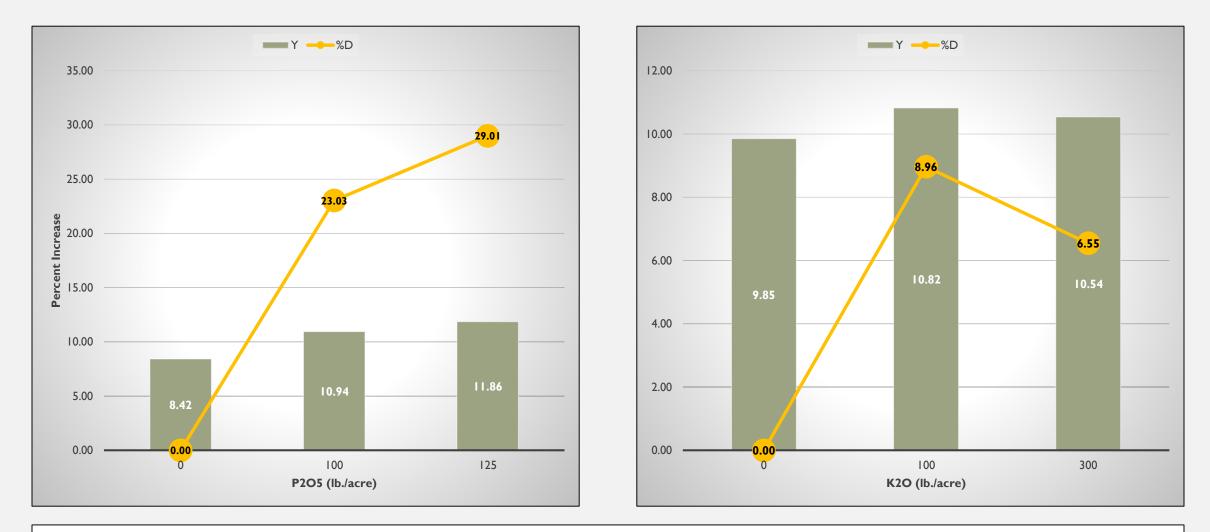
Individually, percent yield increase ranged from 8 to 8.2% in 2018 (8 cuttings), 6.5 to 7.6% in 2019 (6 cuttings) for Phosphorus. It ranged 4.0 to 4.1% in 2018, and 1.4 to 2.4% in 2019 for potassium.

A P-K Combination effect on yield at MAC (2018 & 2019)


Percent yield increase due to P & K treatments over untreated control ranged from 7.03 to 14.70% in 2018 and 2.55 to 12.35 in 2019.

Balanced Fertility Synergetic Effect at MAC (average of 2018 & 2019)

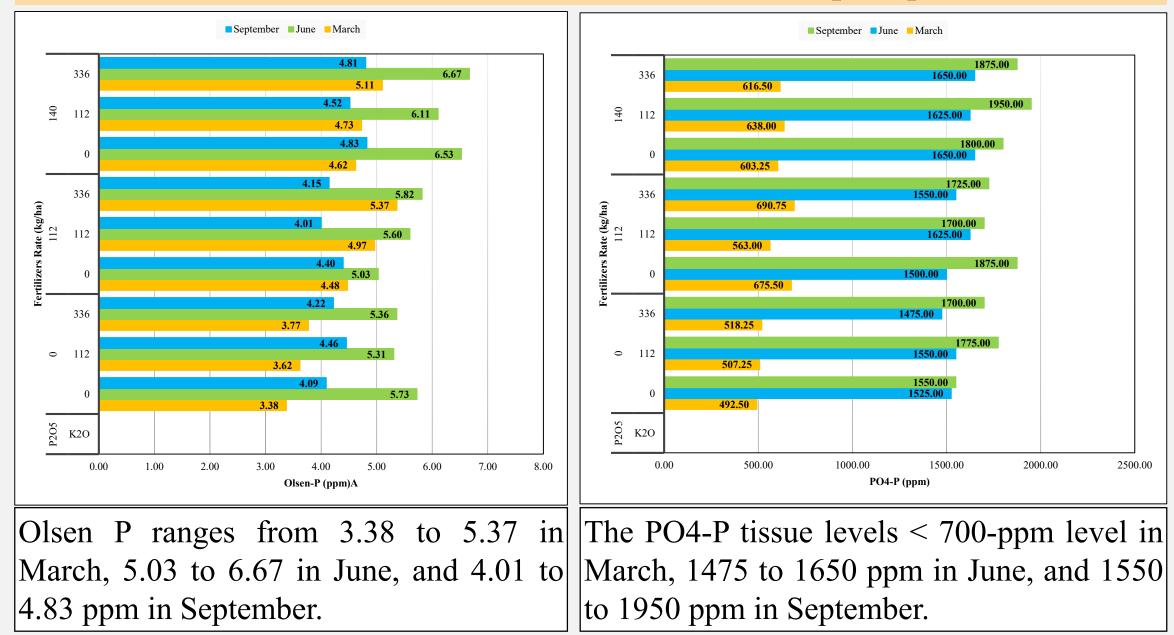
P_2O_5 (lb. acre ⁻¹)	K_2O (lb. acre ⁻¹)	Yield (tons ac ⁻¹)	Response				
0	0	12.86					
0	100	13.66	0.80, tons ac ⁻¹				
125	0	14.20	1.34, tons ac ⁻¹				
125	100	14.90	2.04, tons ac^{-1}				
Average $(P + K)$		13.94	1.08, tons ac ⁻¹				
Difference {(PK- ave (P+K)}		0.96	6.44%				
Yield Advantage of Interaction (PK) over Individual components							
Together (PK) over P alone		0.7 (4.70 %)	Synergetic effect of				
Together (PK) over K alone		1.24 (8.32 %)	PK Interaction				


P and K together increased hay yield by 2.04 tons ac^{-1} over unfertilized, and 0.7 tons ac^{-1} (5%) over P alone and 1.24 tons ac^{-1} (8.32%) over K alone or an increase of 0.96 tons ac^{-1} (6.44%) more (synergetic effect) than when average of each was applied alone.

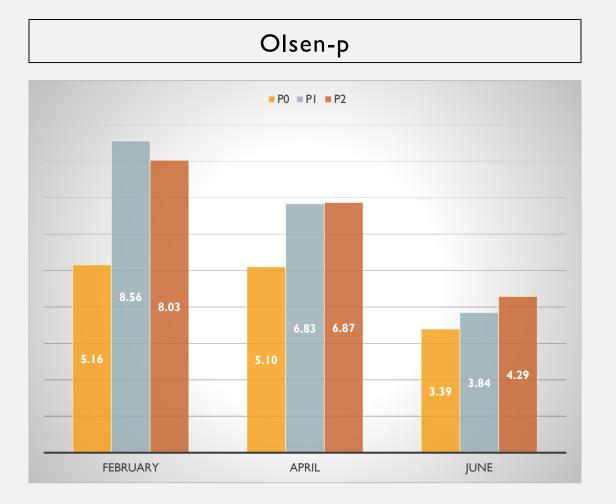
A P-K Combination effect on yield (5 Cuttings Tube-2019)

Percent yield increase (%D) due to P & K treatments over untreated control ranged from 6.82 to 41.78% in 2019 in the Tube trial.

PAND K IMPACT ON YIELD (TUBE-2019)


Individually, percent yield (Y) increase (%D) ranged from 23.03 to 29.01% for Phosphorus and ranged 6.55 to 8.96% for potassium in 2019 (5 cuttings).

Balanced fertility synergetic effect (2019-Tube)


P_2O_5 (lb. acre ⁻¹)	K_2O (lb. acre ⁻¹)	Yield (tons a	(cre^{-1})	Response			
0	0	7.60	7.60				
0	100	8.16	8.16				
125	0	11.01	11.01				
125	100	13.05		5.45 , tons ac ⁻¹			
Average (P + K)		9.59	9.59				
Difference {(PK-ave(P+K))		3.46		26.51%			
Yield Advantage of Interaction (PK) over Individual components							
Together (PK) over P alone	2.	04 (15.63 %)		ergetic effect of			
Together (PK) over K alone	4.	89 (37.47 %)		PK Interaction			

P and K together increased hay yield by 5.45 tons/ac over unfertilized, and 2.04 (15.37%) over P and 4.89 (37.47%) tons/ac or an average increase of 26.51% more (synergetic effect) than when the average of both P and K applied alone.

Added Fertilizers Affected Soil and Plant phosphorus

Phosphorus Fertilizer Effect on Soil and Plant-p (Tube-2019)

Plant concentration (PO4-P)

Summary

- P has significant, while K has slight effect on yield individually,
- P & K interaction has synergetic effects on yield,
- Highest fertilizer application did not result in **significantly** increased yield,
- Balanced PK produced the highest productivity,
- With increasing fertilizer costs, a conservative approach to identifying fertilizer application rates may be more profitable.
- Additional research and detail economic analysis required.

References

- 1. Barbarick, K.A. 1985. Potassium fertilization of alfalfa on a soil high in potassium. Agron. J. 77:442–445.
- Berg, W.K., S.M. Cunningham, S.M. Brouder, B.C. Joern, K.D. Johnson, J. Santini, and J.J. Volenec. 2007. The long-term impact of phosphorous and potassium fertilization on alfalfa yield and yield components. Crop Sci. 47:2198–2209.
- Burayu, W., M. J. Ottman, and A.M. Mostafa 2016. Phosphorus fertilizer sources and rates effect on irrigated alfalfa in Arizona. Resilience Emerging from Scarcity and Abundance. 2016 ASA, CSSA and SSSA International Annual Meetings. <u>https://scisoc.confex.com/crops/2016am/webprogram/Paper99961.html</u>
- 4. Lissbrant, S., S.M. Brouder, S.M. Cunninghm, and J.J. Volenec. 2010. Identification of fertility regimes that enhance long-term productivity of alfalfa using cluster analysis. Agron. J. 102:580–591.
- 5. M. Brouder, B. C. Joern, K. D. Johnson, J. Santini, and J.J. Volenec. 2005. Influence of phosphorus and potassium on alfalfa yield and yield components. Crop Sci. 45: 297-304.
- Ottman, M.J., J. Rovey, A.M. Mostafa, and W. Burayu. 2015. Phosphorus fertilizer rate effect on alfalfa yield and soil test P, Buckeye, AZ 2014. University of Arizona Cooperative Extension Service and Agricultural Experiment Station Bulletin AZ1672-2015. https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1672-2015.pdf

WE thank Kyle Harrington, Gadelhak Ahmed, and Marisa NOBLE for their technical assistance to conduct this study