ENHANCING ALFALFA YIELD AND YIELD COMPONENTS THROUGH BALANCED PHOSPHORUS AND POTASSIUM MANAGEMENT

Worku Burayu and Ayman Mostafa
The university of Arizona, Cooperative Extension

The 7th Alfalfa and Forage Crops Workshop Maricopa County Cooperative Extension Virtual Via Zoom Thursday, April 8, 2021

Indicators of Alfalfa Yield

Live plants per area (15-8 newly stand; 4-5 established ft²)

Number of stems per area (50-60; 40-50 ft²)

Stems per plant (6-8; 4-7)

Mass per shoot (shoot weight)

Indicators of Alfalfa Yield (cont....)

Uniformity of the stand (Visual)

Plant height (26-30 inches)

Internode length

Node #

Trifoliate

These indicators help to answers the question should I maintain my alfalfa field?

Balanced Fertilizers

- With intensive alfalfa production systems, growers increased inputs especially P fertilization rates to achieve higher yields,
- Research indicating the positive impacts of the interactions between P and K on the agronomic performance of alfalfa (Lissbrant et al. 2010),
- There is little information in the low desert AZ on balanced PK fertilization effects on yield and yield components of alfalfa from areas where soil K is not limiting.

Objectives

• To determine the impact of P and K nutrition on yield and yield components of alfalfa,

• To determine which yield components are associated with changes in alfalfa forage yield.

Methodologies

Results: Fertilizers Effect on Alfalfa

Significance of P, K and their interaction on Alfalfa

Source	Yield	Plant/ft ²	Stems/plant	Stems/ft ²	Mass/stem	Height	Trifoliate	Node #	Internode length
P	***	ns	***	***	***	**	ns	ns	***
K	ns	ns	ns	ns	ns	ns	ns	ns	ns
PK	**	ns	**	**	*	**	ns	ns	**

^{*, **, ***} refer to statistically significant at P < 0.05, P < 0.01 and P < 0.001; ns-no significant at the 0.05 probability level.

PK interaction effect on alfalfa yield and yield components

Alfalfa Yield Components Vs. Yield

Yield components Vs. Yield: Yield increases were due to higher number of stems per plant $(r = 0.80^{***})$, stems/ft² $(r = 0.83^{***})$, greater mass per shoot $(r = 0.81^{***})$, plant height $(r = 0.80^{***})$, and internode length $(r = 0.69^{***})$. In the present findings, we estimated 9 stems/plant (9, 1.02, x, y), 59 shoots/ft², 8 lb. /shoot (8, 1.02), the height of 29 inches (29, 1.02) and 2.2 inches internode length (2.2, 1.02) produced the highest yield.

Individually P and K increased yield (MAC & Tube)

MAC

TUBE

Combination of P and K Increased Yield(average of two years)

Balanced Fertility Synergetic Effect

	MAC			TUBE			
Yield Advantage	2018	2019	Average	2019	2020	Average	
PK over Unfertilized	14.77	12.35	13.50	34.80	35.83	35.32	
PK over K alone	8.30	8.42	8.35	34.29	40.76	37.53	
PK over P alone	3.60	6.21	4.95	9.92	11.29	10.61	
{PK over (P+K)/2)}	5.92	7.28	6.60	22.11	26.02	24.07	

Nutrient amount removed and amount required to give maximum yields

Nutrient	Amount removed (lbs/ton)	Calculated amount removed at 15 t/A (lbs/acre)	Extractable nutrient (lbs/A)	Amount Required (lbs/A)	Amount Applied (based on 8.3 tons/acre) (lbs/A)
		Sandy Clay Loam (MAC) a	at 15 T/A (Maximun	n Yield)	
P_2O_5	15	225	30	195	0, 100, 125
K ₂ O	60	900	771	129	0, 100, 300
		Sandy Loam (Tube trial) a	nt 17 T/A (Maximum	Yield)	
P ₂ O ₅	15	255	36	219	0, 100, 125
K_2O	60	1020	602	418	0, 100, 300

Balanced fertilizer application improved alfalfa yield. Maximum yield obtained at 125/100 (P₂O₅/K₂O) lb. acre⁻¹ yr⁻¹ on both soil types.

Summary

- P & K interaction has significant and positive effect on yield and yield components of alfalfa,
- Balanced PK at 125 lbs a⁻¹ P₂O₅ and 100 lbs a⁻¹ K₂O produced the highest productivity,
- P has significant, while K has slight effect on yield individually,
- Highest single P or K fertilization alone did not result in **significantly** increased yield,
- A conservative approach to identifying fertilizer application rates may be more profitable.
- Additional research and detail economic analysis required.

References

- 1. Barbarick, K.A. 1985. Potassium fertilization of alfalfa on a soil high in potassium. Agron. J. 77:442–445.
- 2. Berg, W.K., S.M. Cunningham, S.M. Brouder, B.C. Joern, K.D. Johnson, J. Santini, and J.J. Volenec. 2007. The long-term impact of phosphorous and potassium fertilization on alfalfa yield and yield components. Crop Sci. 47:2198–2209.
- 3. Burayu, W., M. J. Ottman, and A.M. Mostafa 2016. Phosphorus fertilizer sources and rates effect on irrigated alfalfa in Arizona. Resilience Emerging from Scarcity and Abundance. 2016 ASA, CSSA and SSSA International Annual Meetings.

 https://scisoc.confex.com/crops/2016am/webprogram/Paper99961.html
- 4. Lissbrant, S., S.M. Brouder, S.M. Cunninghm, and J.J. Volenec. 2010. Identification of fertility regimes that enhance long-term productivity of alfalfa using cluster analysis. Agron. J. 102:580–591.
- 5. Mostafa, A., and W. Burayu. 2020. Improving Alfalfa Yield with Application of Balanced Fertilizers. University of Arizona Cooperative Extension Service and Agricultural Experiment Station Bulletin AZ1833-2020. https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1833-2020.pdf
- 6. M. Brouder, B. C. Joern, K. D. Johnson, J. Santini, and J.J. Volenec. 2005. Influence of phosphorus and potassium on alfalfa yield and yield components. Crop Sci. 45: 297-304.
- 7. Ottman, M.J., J. Rovey, A.M. Mostafa, and W. Burayu. 2015. Phosphorus fertilizer rate effect on alfalfa yield and soil test P, Buckeye, AZ 2014. University of Arizona Cooperative Extension Service and Agricultural Experiment Station Bulletin AZ1672-2015. https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1672-2015.pdf

