ENHANCING ALFALFA YIELD AND YIELD COMPONENTS THROUGH BALANCED PHOSPHORUS AND POTASSIUM MANAGEMENT Worku Burayu and Ayman Mostafa The university of Arizona, Cooperative Extension The 7th Alfalfa and Forage Crops Workshop Maricopa County Cooperative Extension Virtual Via Zoom Thursday, April 8, 2021 #### **Indicators of Alfalfa Yield** Live plants per area (15-8 newly stand; 4-5 established ft²) Number of stems per area (50-60; 40-50 ft²) **Stems per plant** (6-8; 4-7) Mass per shoot (shoot weight) #### **Indicators of Alfalfa Yield (cont....)** Uniformity of the stand (Visual) Plant height (26-30 inches) **Internode length** Node # **Trifoliate** These indicators help to answers the question should I maintain my alfalfa field? #### **Balanced Fertilizers** - With intensive alfalfa production systems, growers increased inputs especially P fertilization rates to achieve higher yields, - Research indicating the positive impacts of the interactions between P and K on the agronomic performance of alfalfa (Lissbrant et al. 2010), - There is little information in the low desert AZ on balanced PK fertilization effects on yield and yield components of alfalfa from areas where soil K is not limiting. # **Objectives** • To determine the impact of P and K nutrition on yield and yield components of alfalfa, • To determine which yield components are associated with changes in alfalfa forage yield. # Methodologies #### **Results: Fertilizers Effect on Alfalfa** ## Significance of P, K and their interaction on Alfalfa | Source | Yield | Plant/ft ² | Stems/plant | Stems/ft ² | Mass/stem | Height | Trifoliate | Node
| Internode
length | |--------|-------|-----------------------|-------------|-----------------------|-----------|--------|------------|-----------|---------------------| | P | *** | ns | *** | *** | *** | ** | ns | ns | *** | | K | ns | PK | ** | ns | ** | ** | * | ** | ns | ns | ** | ^{*, **, ***} refer to statistically significant at P < 0.05, P < 0.01 and P < 0.001; ns-no significant at the 0.05 probability level. #### PK interaction effect on alfalfa yield and yield components # Alfalfa Yield Components Vs. Yield **Yield components Vs. Yield:** Yield increases were due to higher number of stems per plant $(r = 0.80^{***})$, stems/ft² $(r = 0.83^{***})$, greater mass per shoot $(r = 0.81^{***})$, plant height $(r = 0.80^{***})$, and internode length $(r = 0.69^{***})$. In the present findings, we estimated 9 stems/plant (9, 1.02, x, y), 59 shoots/ft², 8 lb. /shoot (8, 1.02), the height of 29 inches (29, 1.02) and 2.2 inches internode length (2.2, 1.02) produced the highest yield. # Individually P and K increased yield (MAC & Tube) #### **MAC** **TUBE** ## Combination of P and K Increased Yield(average of two years) # **Balanced Fertility Synergetic Effect** | | MAC | | | TUBE | | | | |----------------------|-------|-------|---------|-------|-------|---------|--| | Yield Advantage | 2018 | 2019 | Average | 2019 | 2020 | Average | | | PK over Unfertilized | 14.77 | 12.35 | 13.50 | 34.80 | 35.83 | 35.32 | | | PK over K alone | 8.30 | 8.42 | 8.35 | 34.29 | 40.76 | 37.53 | | | PK over P alone | 3.60 | 6.21 | 4.95 | 9.92 | 11.29 | 10.61 | | | {PK over (P+K)/2)} | 5.92 | 7.28 | 6.60 | 22.11 | 26.02 | 24.07 | | ## Nutrient amount removed and amount required to give maximum yields | Nutrient | Amount removed (lbs/ton) | Calculated amount removed
at 15 t/A
(lbs/acre) | Extractable nutrient (lbs/A) | Amount
Required
(lbs/A) | Amount Applied
(based on 8.3
tons/acre)
(lbs/A) | |-------------------------------|--------------------------|--|------------------------------|-------------------------------|--| | | | Sandy Clay Loam (MAC) a | at 15 T/A (Maximun | n Yield) | | | P_2O_5 | 15 | 225 | 30 | 195 | 0, 100, 125 | | K ₂ O | 60 | 900 | 771 | 129 | 0, 100, 300 | | | | Sandy Loam (Tube trial) a | nt 17 T/A (Maximum | Yield) | | | P ₂ O ₅ | 15 | 255 | 36 | 219 | 0, 100, 125 | | K_2O | 60 | 1020 | 602 | 418 | 0, 100, 300 | Balanced fertilizer application improved alfalfa yield. Maximum yield obtained at 125/100 (P₂O₅/K₂O) lb. acre⁻¹ yr⁻¹ on both soil types. #### **Summary** - P & K interaction has significant and positive effect on yield and yield components of alfalfa, - Balanced PK at 125 lbs a⁻¹ P₂O₅ and 100 lbs a⁻¹ K₂O produced the highest productivity, - P has significant, while K has slight effect on yield individually, - Highest single P or K fertilization alone did not result in **significantly** increased yield, - A conservative approach to identifying fertilizer application rates may be more profitable. - Additional research and detail economic analysis required. #### References - 1. Barbarick, K.A. 1985. Potassium fertilization of alfalfa on a soil high in potassium. Agron. J. 77:442–445. - 2. Berg, W.K., S.M. Cunningham, S.M. Brouder, B.C. Joern, K.D. Johnson, J. Santini, and J.J. Volenec. 2007. The long-term impact of phosphorous and potassium fertilization on alfalfa yield and yield components. Crop Sci. 47:2198–2209. - 3. Burayu, W., M. J. Ottman, and A.M. Mostafa 2016. Phosphorus fertilizer sources and rates effect on irrigated alfalfa in Arizona. Resilience Emerging from Scarcity and Abundance. 2016 ASA, CSSA and SSSA International Annual Meetings. https://scisoc.confex.com/crops/2016am/webprogram/Paper99961.html - 4. Lissbrant, S., S.M. Brouder, S.M. Cunninghm, and J.J. Volenec. 2010. Identification of fertility regimes that enhance long-term productivity of alfalfa using cluster analysis. Agron. J. 102:580–591. - 5. Mostafa, A., and W. Burayu. 2020. Improving Alfalfa Yield with Application of Balanced Fertilizers. University of Arizona Cooperative Extension Service and Agricultural Experiment Station Bulletin AZ1833-2020. https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1833-2020.pdf - 6. M. Brouder, B. C. Joern, K. D. Johnson, J. Santini, and J.J. Volenec. 2005. Influence of phosphorus and potassium on alfalfa yield and yield components. Crop Sci. 45: 297-304. - 7. Ottman, M.J., J. Rovey, A.M. Mostafa, and W. Burayu. 2015. Phosphorus fertilizer rate effect on alfalfa yield and soil test P, Buckeye, AZ 2014. University of Arizona Cooperative Extension Service and Agricultural Experiment Station Bulletin AZ1672-2015. https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1672-2015.pdf