Effects of Heat Stress on Cotton Production in the Low Deserts of Arizona

Dr. Randy Norton
Extension Agronomist
The University of Arizona
2020 Fall Virtual Field Day

Blase Evancho, Parker Robinson, Kaleb Bryce, Naomi Pier
Rayner Field Day — University Variety Trial

• Virtual
 • Some time in November
 • Perhaps right after Thanksgiving
Arizona Cotton Production

- Characterized by hot, dry climate
 - High yield potential
 - Relatively low disease pressure

- Seed production
 - Observed effects on fruiting patterns on new un-tested varieties
 - Observed correlations to L2 heat stress events
Heat Stress in Cotton

- Brown and Zeiher (1998) - Documented other floral abnormalities
 - Smaller flowers
 - Asynchronous development of male and female structures
 - Failure of anthers to release pollen (indehiscence)
 - Presence of elongated stigmas and shortened anthers/filaments
Cotton Heat Stress

• Well characterized by Crop Canopy Temperature (CCT)

• Crop Canopy Temperature (CCT)
 • L1 heat stress: 82.4°F – 86°F
 • L2 heat stress: greater than 86°F
 • CCT calculated based upon AT, RH, VPD
 • Correlation between calculated and measured
 • https://cals.arizona.edu/azmet/cot-HSrpt.htm
Objectives

• Establish protocol for in-field measurements to determine a specific cultivars’ ability to tolerate heat stress
 • Correlation of observations to meaningful outcomes
 • Seed set/production
 • Fruit retention
 • Yield
2019-2020 Heat Stress Evaluation Protocol

- Maricopa Ag Center - 2020
 - Flower and Fruit
 - Pollen dehiscence
 - Flower morphology
 - Abortion/Cavitation – plant mapping
 - Incidence of abnormal bolls
 - Flower tagging – follow through to boll development (percent retained and symmetry)
 - Seed and yield
 - Seed count – seed per boll
 - Seed index – grams per 100 seed
 - Lint Yield
- Evaluate commercial controls (DP1044B2RF and DP1549B2XF)
- 39 Entries – same entries as UCAST at Maricopa
CCT Maricopa – 2018/2019/2020

HEAT STRESS 2018/2019 (Maricopa Ag Center)

Canopy Temperature (°F)

LEVEL 1 (82.4)
LEVEL 2 (86)
2018
2019

CCT Maricopa – 2018/2019/2020

HEAT STRESS 2018/2019/2020 (Maricopa Ag Center)

Canopy Temperature (°F)

LEVEL 1 (82.4)
LEVEL 2 (86)
2018
2019
2020

CCT Maricopa – 2020

2020 CROP CANOPY TEMPERATURE
Maricopa Ag Center

Crop Canopy Temperature (°F)

Heat Stress – Maricopa 2019

Maricopa Ag Center - 2019

1st Square 1st Bloom Peak Bloom Cut-out

Air Temperature (°F)

Heat Units Accumulated After Planting (86/55°F)
Heat Stress – Maricopa 2020

Maricopa Ag Center - 2020

Air Temperature (°F)

Heat Units Accumulated After Planting (86/55 °F)

1st Square 1st Bloom Peak Bloom Cut-out

2020 Randy Norton • 928.651.0420 • rnorton@arizona.edu
Flower Morphology

- Flowers given a rating of 1-5
- Dependent upon separation of female and male floral components

2 3 5
Pollen Dehiscence

- Flower given a rating of 0-4
- Dependent on level of pollen dehiscence

0 3 4
Fruit Data Summary

- Flower Morphology
- Pollen Dehiscence

- Flowers Retained
- Asymmetry

2019 data still yet to come for 2020
Final Plant Map

Percent Retention

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td>47.1</td>
<td>10.8</td>
<td>23.5</td>
<td>65.8</td>
</tr>
</tbody>
</table>

Height to Node Ratio

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>1.4</td>
<td>0.2</td>
<td>2.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Mainstem Nodes

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>26.8</td>
<td>1.7</td>
<td>22.8</td>
<td>30.4</td>
</tr>
</tbody>
</table>

Percent Asymmetrical Bolls

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolls</td>
<td>29.3</td>
<td>15.6</td>
<td>67.6</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Seed and Yield Data

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Lint</td>
<td>0.42</td>
<td>0.02</td>
<td>0.46</td>
<td>0.36</td>
</tr>
<tr>
<td>Seed Index (g/100 seed)</td>
<td>9.6</td>
<td>0.9</td>
<td>11.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Seed weight per boll (g)</td>
<td>2.1</td>
<td>0.3</td>
<td>2.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Number of seed per boll</td>
<td>21.6</td>
<td>2.8</td>
<td>26.3</td>
<td>15.9</td>
</tr>
<tr>
<td>Seedcotton Yield (lb/acre)</td>
<td>3668.3</td>
<td>604.5</td>
<td>4865.9</td>
<td>2321.6</td>
</tr>
</tbody>
</table>
Flower Morphology – 26 Aug

26 August

Pearson’s $r = -0.4015$
Pollen Dehiscence – 31 Jul

Pearson’s $r = 0.5206$

![Graph showing Pollen Dehiscence](image URL)
Asymmetrical Bolls

Pearson’s $r = -0.2527$
Conclusions – 2019

- Variability among varieties with respect to:
 - Flower morphology
 - Pollen dehiscence
 - Seed attributes
 - Final Plant Map
 - Yield

- Poor to moderate correlation among measured values to yield

- Many more factors controlling yield than just heat tolerance

- Relatively low heat stress year – no extended periods of L2 heat stress
 - Not a representative year for heat stress effects
Conclusions – 2020

• Variability among varieties with respect to:
 • Flower morphology
 • Pollen dehiscence
 • Seed attributes
 • Final Plant Map
 • Yield
Moving Forward...

- Need for additional years of evaluation
 - Capture variability in heat stress years
- Flower tagging
 - Follow an evaluated bloom to determine fate
- Funding and support
 - Participating seed companies:
 - Bayer
 - BASF
 - Corteva
 - Americot