

Management of Alfalfa Nutrients & Pests in Alfalfa

Ayman Mostafa Worku Burayu Kyle Harrington

> Agricultural Production Seminar April 6, 2022

Alfalfa: Importance & Issues

	AZ	USA
Harvested acres	260,000 <mark>(~1.6%)</mark>	16.6 millions
Production (Tons)	2.16 M <mark>(~13%)</mark>	52.6 millions
Average yield (tons/acre)	<mark>8.4</mark>	<mark>3.2</mark>
Value (at \$175 / ton)	\$451 M	\$9.2 billion

Low Desert Alfalfa: Importance & Issues

- Non-dormant varieties
- Multiple harvests per year
- High productivity
- Cutting cycle
- Alfalfa stand life
- Intensive production system
- Aging associated problems
- Require replacement

- Production continuity.
- 6 to 10 cuttings a year.
- Average of 8.4 tons/acre.
- 28 to 32 days schedule.
- > 3 years.
- Remove various resources.
- Yield, quality, autotoxicity.
- High establishment cost.

Importance of balanced fertilizer management

N – P – K

Objectives

- Determine the yield response of irrigated alfalfa to various blend of P and K fertilizers.
- Assess the effects of different P & K levels on soil and plant tissues.

Trials at Maricopa Ag Center (MAC)

Design: Factorial in RCBD. Plot area = 400 ft², 5 ft b/n plots and 10 ft b/n replications.

•

٠

•

Trials at Maricopa Ag Center (MAC)

- Fertilizers applied, November 2017
- Eight cuttings in 2018 and six in 2019
- Hay Yield adjusted to 12% moisture
- Soil samples at 6 inches depth collected
- Soil P & K determined
- A subsample of 48 shoots each plot
- Plant P & K concentration determined

Tube Trials

Texture: Sandy loam	(72% sand)
K (ppm):	250
Na (ppm):	210
Olsen-p (ppm):	7.8
Nitrate-N (ppm):	3.9
pH:	9.0
	Texture: Sandy loam K (ppm): Na (ppm): Olsen-p (ppm): Nitrate-N (ppm): pH:

P fertilization VS hay yield at MAC Trial 2018

P ₂ O ₅ (MAP) [†]	January	March	April	May	June	July	August	September	Total
<u>Lbs. acre⁻¹</u>	Hay Yield, tons acre ⁻¹								
0 (0)	1.24B ⁺⁺	1.62B	1.94B	2.36B	2.69A	1.63B	2.15A	2.19B	15.82B
100 (192)	1.31B	1.85A	2.08A	2.49A	2.97A	1.93A	2.24A	2.33A	17.20A
125 (240)	1.46A	1.88A	2.10A	2.50A	2.88A	1.76AB	2.33A	2.31A	17.22A

P Fertilizer Increased Yield

• The benefit of phosphorus fertilizer was realized in all cuttings. No difference was detected between the rates of 100 (192) and 125 (240) lbs. acre⁻¹, after the first January cuttings.

[†] Sources of fertilizer: MAP-monoammonium phosphate (11-52-0).

^{††} Within a column, values followed by the same letters are not significantly different at 0.05 level of probability.

P Fertilization VS Hay Yield at MAC Trial 2019

P ₂ O ₅ (MAP) [†]	March	April	May	June	July	Aug	Total
Lbs. acre ⁻¹	Hay Yield, tons ha ⁻¹						
0 (0)	1.51††	2.22A	2.18A	1.85A	1.67B	1.54A	10.98B
100 (192)	1.74A	2.32A	2.30A	1.89A	1.88A	1.61A	11.74A
125 (240)	1.83A	2.36A	2.32A	1.89A	1.85A	1.64A	11.88A

P Fertilizer Increased Yield

• The benefit of phosphorus fertilizer was realized in all cuttings. No difference was detected between the rates of 100 (192) and 125 (240) lbs. acre⁻¹, after the first January cuttings.

[†] Sources of fertilizer: MAP-monoammonium phosphate (11-52-0).

^{††} Within a column, values followed by the same letters are not significantly different at 0.05 level of probability.

Separate Impacts of P & K Fertilization on Yield at MAC Trials 2018 & 2019

Combined Impacts of P & K Fertilization on Yield at MAC Trials 2018 & 2019

Synergetic Effects of P & K on Average Yield at MAC Trials

$\mathbf{D} \left(1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	K_2O	Yield (targ ag-1)	Degrades				
P_2O_5 (ID. acre ⁻¹)	(ID. acre ⁺)	(tons ac^{-1})	Response				
0	0	12.86					
0	100	13.66	0.80, tons ac ⁻¹				
125	0	14.20	1.34, tons ac^{-1}				
125	100	14.90	2.04, tons ac^{-1}				
Average $(P + K)$		13.94	1.08, tons ac^{-1}				
Difference {(PK- ave		0.96	6 44%				
(P+K)		0.20					
Yield Advantage of Interaction (PK) over Individual components							
Together (PK) over P alone		0.7 (4.70 %)	Synergetic effect				
Together (PK) over K alone		1.24 (8.32 %)	of PK Interaction				

Combined Impacts of P & K on Yield (5 cuts) Tube Trial 2019

Separate Impacts of P & K Fertilization on Yield at Tube Trial 2019

Synergetic Effects of P & K on Average Yield at Tube Trial 2019

	K ₂ O (lb.	Yield (tons				
P_2O_5 (lb. acre ⁻¹)	acre⁻¹)	acre ⁻¹)	Response			
0	0	7.60				
0	100	8.16	0.56, tons ac ⁻¹			
125	0	11.01	3.41, tons ac^{-1}			
125	100	13.05	5.45 , tons ac ⁻¹			
Average (P + K)		9.59	1.99, tons ac^{-1}			
Difference {(PK-ave(P+K))		3.46	26.51%			
Yield Advantage of Interaction (PK) over Individual components						
Together (PK) over P alone		2.04 (15.63 %)	Synergetic			
Together (PK) over K alone		4.89 (37.47 %)	Interaction			

Impacts of P & K Fertilization on Yield at Tube Trial 2020

Balanced P and K Fertilizers Improved Alfalfa Yield and Yield Components at Tube Trial 2020

P Fertilizer Effect on Soil and Plant-P (Tube-2019)

Olsen-P

Conclusions

- P has significant, while K has slight effect on yield individually,
- P & K interaction has synergetic effects on yield,
- Highest fertilizer application did not result in <u>significantly</u> increased yield,
- Balanced PK produced the highest productivity,
- With increasing fertilizer costs, a conservative approach to identifying fertilizer application rates may be more profitable.
- Additional research and detail economic analysis required.

Alfalfa Aphid Complex

• The pea aphid, Acyrthosiphon pisum

• The blue alfalfa aphid, Acyrthosiphon kondoi

Alfalfa Aphid Complex

• The spotted alfalfa aphid, Therioaphis maculata

• The cowpea aphid, Aphis craccivora

After 2012 Before 2012

Isaria sp & Zoophthora sp. Entomopathogenic Fungus

Effects of formulations of *Isaria fumosorosea* (If) & *Beauveria bassiana* (Bb) on blue alfalfa aphid (BAA)

Setup for indirect inoculum application method

Mortality % of BAA exposed to different doses of (If) & (Bb) application methods after 5 days

Aphid Populations/Stem *vs* Yield (ton/A) for 2017 Study

Aphid Populations/Stem *vs* Yield (ton/A) for 2018 Study

Seasonal Aphids/Stem -Yield (Tons/A)

IPM Continuum

Biologicallybased strategies

Prevention

Reduced risk insecticides

Thresholds

Scouting

Chemically Reliant

Biologically

Reliant

