

College of Agriculture and Life Sciences

COOPERATIVE EXTENSION School of Plant Sciences

2020 Cotton Chemical Weed Control Review

Bill McCloskey Extension Weed Science

The Past – Cotton Chemical Weed Control

- Started in Extension 1991
 - Reviewed past PowerPoint presentations
 - Topics discussed
 - Weeds
 - Herbicides
 - Issues

Past Chemical Weed Control in Cotton

• Early 1990s

- No truly selective "over-the-top" (topical) BROADLEAF herbicides
- Focus on preemergence herbicides: pendimethalin, trifluralin
 - Used with diuron or prometryn or cyanazine (Bladex)
- Grass herbicides were more widely used
 - Fusilade 2000, Poast Plus, and Select 2EC
- Purple & Yellow nutsedges ranked as the worst weeds in cotton
 - Eptam, MSMA, Dual (yellow nutsedge only)
 - Zorial Rapid 80 (norflurazon now marketed as Solicam)
- Other problem weeds: e.g., morningglories, pigweeds
- Herbicide resistant weeds NOT on growers minds

Past Chemical Weed Control in Cotton

- Late 1990s
 - BXN Cotton resistant to Buctril (bromoxynil)
 - Roundup Ready Cotton resistant to glyphosate
 - Tolerance issue Topical only to 4th true leaf
 - Labelled rate was 0.75 lb ae/A (equivalent to 22 oz/A Roundup PowerMAX)

Tolerance of DP5690RR to Topical Roundup Ultra

Treatment	Seed Cotton Yield (kg/plot)
 Roundup Ultra -1 qt/A, 4 leaf 	11.2 ± 2.3 a
 Roundup Ultra -1 qt/A, 4 leaf + 6 node 	e 10.6 ± 1.0 ab
 Roundup Ultra -1 qt/A, 4 leaf + 10 nod 	de 4.5 ± 0.5 c
 Roundup Ultra -1 qt/A, 4 leaf + 14 noc 	de 9.0 ± 1.5 b
No Roundup Ultra	11.3 ± 2.0 a
 Yield effect was not consistent 	

- Spray topical glyphosate up to 4th true leaf.

All treatments received Treflan @ 0.5 lb. a.i./A PPI and were hand weeded

Past Chemical Weed Control in Cotton

- Late 1990s
 - BXN Cotton resistant to Buctril (bromoxynil)
 - Roundup Ready Cotton resistant to glyphosate
 - Tolerance issue Topical only to 4th true leaf
 - Staple herbicide selective topically
 - Increase in off-target drift issues and application errors
 - Preemergence herbicides
 - pendimethalin, trifluralin + diuron or prometryn or cyanazine (Bladex)
 - Other herbicides & weeds similar as in early 1990s.

Past Chemical Weed Control in Cotton

- 1990s Trends (570,000 acres of cotton at start of decade)
 - Preplant Incorporated (PPI) herbicides used extensively
 - Cultivation was common, routine
 - Post-directed herbicides sprayers were commonly used
 - Shields and hoods to protect cotton (prometryn, diuron, etc.)
 - 6 row equipment for accurate placement of herbicide
 - Hand weeding was common
 - Growers made an effort to spray small weeds
 - Herbicide options did not perform well on large weeds

Early 2000s

- Precision cultivation
- Development of Roundup Ready Flex Cotton
- Development of Liberty Link Cotton (glufosinate)
- Herbicide registrations
 - Aim (carfentrazone)
 - ET (pyraflufen)
 - Chateau (flumioxazon)
 - Envoke (trifloxysulfuron)
- Herbicide resistant weed concerns were minimal

Tools – 2006 Cotton Herbicides by Target Weed

Grasses

<u>Preemergence</u>: Pendimax, Prowl, Prowl H₂O, Treflan, trifluralin <u>Postemergence</u>: Poast, Fusilade, Select, glyphosate, DSMA, Ignite280, MSMA

Broadleaves

<u>Preemergence</u>: Prowl, Treflan, diuron* (Karmex), prometryn (Caparol), Zorial* Rapid 80 (*do not use PPI if dry planting cotton)

<u>Postemergence:</u> Aim, Chateau, Cotoran (fluometuron), diuron, DSMA, <u>Envoke, ET, glyphosate herbicides-RR Flex</u> (e.g., Glyphomax, Glyphos, Glyphosate Original, Roundup WeatherMax, Touchdown IQ), Goal, Ignite280, MSMA, prometryn, Staple, Suprend

Nutsedges

<u>Preemergence:</u> Zorial Rapid 80, Dual Magnum (yellow only) <u>Postemergence:</u> DSMA, Envoke, glyphosate herbicides, Ignite280 (suppression), MSMA

	Post-directed and Layby Herbicide Options:						
	Cotton 12 to 24 Inches Tall or Greater						
	Herbicide (add adjuvants)	<u>Soil Texture</u>					
	Aim – 1 to 1.6 oz/A	no soil activity					
	Chateau – 2 oz/A	all, soil activity					
•	Diuron – 0.8 to 1.6 qt/A	coarse and medium					
	ET – 0.5 to 1 oz/A	no soil activity					
•	Prometryn - 0.8 to 1.6 qt/A	coarse and medium					
•	Goal – 0.5 lb ai/A	all soil types					
	Layby Pro (linuron, diuron) –	1.6 to 2.4 pt/A all soil types					
	Tank mixes						
	 PPO inhibitors (Aim, ET) + 	either prometryn or diuron					
	 RR/glyphosate (e.g. grasse Liberty cotton/Ignite 	es, nutsedges or large weeds) or					
	Consider layby herbicide-crop	rotation restrictions					

Past Chemical Weed Control in Cotton

- Early 2010s Trends
 - Preplant Incorporated (PPI) herbicides NOT always used
 - Pendimethalin, trifluralin remain very effective against Palmer amaranth
 - Cultivation for weed control NOT often used
 - Post-directed spraying using shields or hood was NOT common.
 - Layby herbicide treatments often not used.
 - Total postemergence chemical weed control programs common
 - Large broadcast spray booms and topical sprays
 - Hand weeding NOT common, labor shortages

* July 2012: field after 3 sprays of 44 oz/A (1.5 lb ae glyphosate/A). Grower admitted having difficulty controlling Palmer amaranth in 2011.

* Second GR Palmer amaranth field in Buckeye with patchy distribution

* Plants sprayed with 5% solution 7/11; no symptoms 7/17

Herbicide Resistant Weeds

- Buckeye Palmer Amaranth population Resistant to:
 - Glyphosate
 - ALS inhibitors: Staple, Envoke, Sandea, Raptor, Pursuit,
- Glyphosate resistance in Palmer amaranth developed once (Georgia).
- Transported across the county on equipment
 - Illustrates the need for sanitation
- Common across Arizona

Glyphosate Resistant Palmer amaranth Coolidge – August 24, 2016

Glyphosate Resistant Palmer Amaranth in Marana

Risks of over reliance on chemical weed control

- Herbicide Resistance
 - Glyphosate resistant Palmer amaranth (also ALS resistant)
 - Glyphosate resistant hairy fleabane
 - Atrazine resistance in Palmer amaranth reported

BMP adoption varies more across practices than crops

A National Summit on Strategies to Manage Herbicide-Resistant Weeds

May 10, 2012

Growers often or always adopting BMPs by total number of BMPs adopted

A National Summit on Strategies to Manage Herbicide-Resistant Weeds

Risks of over reliance on chemical weed control

- Herbicide Resistance
 - Glyphosate resistant Palmer amaranth (also ALS resistant)
 - Glyphosate resistant hairy fleabane
 - Atrazine resistance in Palmer amaranth reported
- Off target movement or drift
 - Volatility or movement of herbicide in gaseous form
 - Spray droplet movement
- Sprayer contamination
- Application error
 - Spraying the wrong field

Proactive Management Tactics that delay herbicide resistance can include one or more of the following tactics:

Herbicides

Multiple herbicides each with different mechanisms of action

- Mixes

- Sequences
- Across seasons

Mechanical

Tillage

- Pre-plant

- In-crop cultivation

– Mowing

- In-row weeding
- Post-harvest

Hand-rogueing before seed set

Cultural

Crop rotation

Plant population

Row spacing

Planting date

Fertilizer placement

Cover crops

PREE- & POST-Emergence Selective Cotton Herbicides (use with appropriate traits)

Preplant – Residual Herbicides	Early POST – Mid POST (sequential sprays) Selective Chemistries (with appropriate varieties)			
Pendimethalin	Dual Magnum (metolachlor) Warrant (acetochlor) Outlook (dimethenamid-P)			
Trifluralin	Pendimethalin (Prowl H ₂ 0)			
Prometryn	Glyphosate			
Diuron	Glufosinate (Liberty, Interline)			
Solicam	2,4-D-choline (Enlist One) 2,4-D-choline+glyphosate (Enlist Duo)			
	Dicamba (Engenia, Xtendimax)			
	Pyrithiobac (Staple LX), Trifloxysulfuron (Envoke)			
	Graminicides: fluazifop, sethoxydim, clethodim (Fusilade, Poast, Select)			

Cotton Post-Direct and Layby Herbicides

Layby PD broadcast	PREE soil activity	Foliar Herbicide type/activity	General Crop Rotation intervals
Prowl H ₂ O (pendimethalin)	Yes	None	Medium-Long
Prometryn	Yes	Contact	Short
Diuron	Yes	Contact	Long
Goal, GoalTender (oxyfluorfen)	Yes	Contact	Long-small grains, Short labeled crops
Chateau (flumioxazin)	YES	Contact	Short with tillage
Fierce (flumioxazin + pyroxasulfone)	YES	Contact	Long
Aim (carfentrazone)	NO	Contact	None-registered crops
ET (pyraflufen)	NO	Contact	Short (30 days)

New Cotton Herbicides

- Dicamba resistant cotton Bayer (formerly Monsanto)
 - Engenia (BASF) dicamba (BAPMA, tridentate amine salt*)
 - XtendiMax (Bayer) dicamba (DG or diglycolamine salt*)
 - *All include proprietary technology to reduce volatility
- <u>2,4-D resistant cotton Corteva (formerly Dow)</u>
 - Enlist One 2,4-D:choline formulation (best seller in 2018)
 - Do not use in Yuma, La Paz, Maricopa, Pinal, Pima & Santa Cruz Co.
 AZ SLN label expected in 2020
 - Enlist Duo 2,4-D:choline + glyphosate
 - Do not use south of I-8 or west of Highway 85 (AZ SLN)
 - Stacked with glyphosate and glufosinate
- No cross-resistance

Nozzle Selection

First & most important decision made by an applicator

Incorrect nozzles can increase drift by 66 times*

Based on AGDISP modelling comparing approved TTI 11004 vs. unapproved TT 11004 each at 60 PSI

Allowed Nozzles

Xtendimax

Manufacturer	Model					1						
AlbuZ	AVI110025			_		N	AX 60					
	AVI11003								MAX 80			
	AVI11004	MAX 90										
	AVI11005	MAX 90										
	AVI11006	MAX 90										
GreenLeaf	TADF025-D	MAX 90										
	TADF03-D									MAX 90		
	TADF04-D									MAX 90		
	TADF05-D									MAX 90		
	TADF06-D									MAX 90		
	TDXL11003											
	TDXL11004		MAX 80									
	TDXL11006		MAX 90									
	TDXL11008		MAX 90									
	TDXL-D11002									MAX 90		
	TDXL-D110025									MAX 90		
	TDXL-D11003						1	MAX 70				
	TDXL-D11004									MAX 90		
	TDXL-D11006									MAX 90		
	TDXL-D11008										MAX 100	
	TDXL-D025		MAX 80									
Hypro	ULD12004		MAX 80									
	ULD12005		MAX 70									
	ULD12006						MAX	65				
Lechler	ID11003		MAX 60									1
	ID11004								MAX 80			
·	ID11005					N	IAX 60					
TeeJet	AI11002								MAX 80			1
	AI110025			10		-			MAX 80			
	AI11003		MAX 80									
	AI11004		MAX 80									
10	AI11005		MAX 80									++
18	AI11006								MAX 80			+ +
	AI11008								MAX 80			+ +
	AITTJ11004				N	AX 50	1 1					
	AITTJ11006					N	AX 60					
	AIXR11004					N	AX 60					
	AIXR11005					N	AX 60					
	AIXR11006					N	IAX 60					
	TTI11002		MAX 80									
	TTI110025							(MAX 80			
TeeJet (Cont.)	TTI11003								MAX 80			
	TTI11004		MAX 80									
	TTI11005								MAX 80			
	TTI11006			10					MAX 80			
Wilger	MR11006					N	IAX 60				î î	
	MR11008		MAX 70									+ +
								MAY 70				

Maximum-Operating Pressure (psi)

Enlist One

Nozzles

Last Updated on 10/16/2017

						Oper	ating Pı	ressure	(psi)
Manufacturer	Nozzle Type	Part Number	10	20	30	40	50	60	70
	TADF03-D	TADF03-D		Min 20		Max 40			
	TADF06-D	TADF06-D		Min 20			Max 50		
Greenleaf	TDXL 11003-D	TDXL 11003-D		Min 20		Max 40			
Technologies	TDXL 11004-D	TDXL 11004-D		Min 20			Max 50		
	TDXL 11005-D	TDXL 11005-D		Min 20				Max 60	
	TDXL 11006-D	TDXL 11006-D		Min 20				Max 60	
Hupen	ULD120-04	ULD120-04 / FC-ULD120-04		Min 20		Max 40			
нурго	ULD120-05	ULD120-05 / FC-ULD120-05		Min 20		Max 40			
Jaha Daara	ULD120-04	PSULD2004 / PSULDQ2004		Min 20		Max 40			
John Deere	ULD120-05	PSULD2005 / PSULDQ2005		Min 20		Max 40			
	ID 110-03	ID 110-03 / ID 110-03C			Min 30	Max 40			
Lashian	ID 110-04	ID 110-04 / ID 110-04C			Min 30	Max 40			
Lechier	ID 110-05	ID 110-05 / ID 110-05C			Min 30	Max 40			
	ID 80-04	ID 80-04 / ID 80-04C			Min 30	Max 40			
7	AI11003	AI11003-VS / AIC1103-VS			Min 30	Max 40			
· ′	AI8003	AI8003-VS / AIC8003-VS			Min 30	Max 40			
TeeJet® Technologies	AI8005	AI8005-VS / AIC8005-VS			Min 30	Max 40			
-	TTI11003	TTI11003-VP		Min 20				Max 60	
	TTI11004	TTI11004-VP		Min 20				Max 63	
	TTI11005	TTI11005-VP		Min 20				Max 60	
	TTI11006	TTI11006-VP		Min 20			Max 50		
	DR110-10	40286-10			Min 30	Max 40			
	UR110-05	40292-05			Min 30		Max 50		
Wilger	UR110-06	40292-06			Min 30			Max 60	
	UR110-08	40292-08			Min 30				Max 70
	UR110-10	40292-10			Min 30				Max 70
4									+

Nozzle Selection

First & most important decision made by an applicator

NOZZLES

2 8

Boom Height Requirement Key for consistency of nozzle performance

Maximum Boom Height Above Target

48" height can increase drift potential by 5.6 times*

*Based on AGDISP modelling comparing 24" vs. 48" above target with approved TTI 11004 at 60 PSI

Application Parameters

Parameter	Enlist One & Duo	Xtendimax, Engenia				
Boom height	24 inches maximum above target canopy					
Sprayer speed	15 MPH maximum					
Wind speed (Measure repeatedly)	3 to 10 MPH recommended, 3 to 15 MPH allowed	3 to 10 MPH				
Temp. Inversions	Do not spray	Do not spray; spray only 1 hour after sunrise to 2 hours before sunset				
Buffer requirement	30 feet	110 ft (220 ft if > 22 oz/A)				
Susceptible crops in downwind field	Do NOT spray; Applicator must verify downwind crop is not susceptible					
Sprayer clean out	Clean every day, use triple rinse procedure; Do NOT leave spray mix in tank overnight!					

PROTECTION OF ADJACENT SUSCEPTIBLE/SENSITIVE CROPS:

DO NOT APPLY this product when the wind is blowing toward adjacent non-dicamba tolerant susceptible crops;

this includes NON-DICAMBA TOLERANT SOYBEAN AND COTTON.

 Susceptible crops include but are not limited to tomatoes and other fruiting vegetables (EPA crop group 8), fruit trees, cucurbits (EPA crop group 9), grapes, beans, flowers, ornamentals, peas, potatoes, sunflower, tobacco, other broadleaf plants, and including plants in a greenhouse.

Problem of wind direction changes during spraying

THESE TRAINING MATERIALS ARE DESIGNED TO SATISFY FEDERAL TRAINING REQUIREMENTS AND THE TRAINING AND APPLICATION REQUIREMENTS IMPOSED BY THE STATE DEPARTMENT OF AGRICULTURE. V2-12/13

Dicamba Visual Sensitivity Scale for GA - 2018

S. Culpepper, J. Smith, E. Prostko; University of Georgia at Tifton

Herbicide Rate of Visually Detectable Injury

For relative comparison: tomato, squash, and watermelon response to Roundup for visual damage would be in the "lower" category.

*Asterisk notes data from literature; all other data generated in over 70 UGA field experiments.

2,4-D Visual Sensitivity Scale for GA - 2018

S. Culpepper, J. Smith, E. Prostko; University of Georgia at Tifton

Herbicide Rate of Visually Detectable Injury

For relative comparison: tomato, squash, and watermelon response to Roundup for visual damage would be in the "lower" category.

*Asterisk notes data from literature; all other data generated in over 70 UGA field experiments.

The University of Georgia and FL Valley State University, the U.S. Department of Agriculture and counties of the state cooperating. Cooperative Extension, the University of Georgia College of Agricultural and Environmental Sciences, offers educational programs, assistance and materials to all people without regard to race, color, national origin, age, gender or disability. An Equal Opportunity Employer/Affirmative Action OrganizationCommitted to a Diverse Work Forcelssued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, The University of Georgia College of Agricultural and Environmental Sciences and the U.S. Department of Agriculture cooperating.

S. Pardue, Dean and Director

A Meta-Analysis on the Effects of 2,4-D and Dicamba Drift on Soybean and Cotton J. Franklin Egan, Kathryn M. Barlow, and David A. Mortensen *Weed Science 2014 62:193–206*

Dicamba *n* = 42, 18, 19

2,4-D *n* = 117, 76, 75, 64

A Meta-Analysis on the Effects of 2,4-D and Dicamba Drift on Soybean and Cotton J. Franklin Egan, Kathryn M. Barlow, and David A. Mortensen *Weed Science 2014 62:193–206*

2,4-D (1x = 0.95 lb. ae/A) Effects on Susceptible Cotton Lint Yield (lb/A) [RRACenter 2017]

Dicamba (1x = 0.5 lb. ae/A) effect on Susceptible Cotton Lint Yield (lb/A) [RRAC 2016]

