Basic Botany For Master Gardeners

Matt Halldorson Spring 2023

Scientific Classification Example: Wine grapes

- > Domain: Eukaryota ("higher" organisms e.g. plants, animals, fungi)
- Kingdom: Plantae (plants, as opposed to animals and fungi)
- Phyllum/Division: Angiospermae (flowering plants)
- Class: Dicotyledoneae (dicots)
- Order: Vitales
- Family: Vitaceae (vines)
- Genus: Vitis (temperate grapes)
- Species: vinifera (wine grapes
- Variety/Cultivar: Cabernet Sauvignon
- Clone- mutant that has been propagated

Sun Vs Shade Leaves Sun Leaves Shade Leaves ▶ Thick, multiple layer of ▶ Thin and large with lots of surface photosynthetic cells area to catch as much light as possible Thicker cuticle to protect from ▶ Thinner cuticle water loss Less surface area to volume ratio Darker in color-greater concentration of chlorophyll Lighter in color Sometimes tinged red More, smaller stomata

Legume-Pods that split along two opposite edges. Example: Bean Capsule-Poppy Berry- Grape, Tomato Drupe (stone fruit)- cherry, peach, plum, olive, apricot, pecan Hesperidium- citrus fruits Pepo-melons/squash Pome- apple

Seed Germination Seed Germination = Viable/embryo is alive germination Cold requirements/stratification Begins when embryo takes in water Gibberellins regulate enzymes Hypocoty Optimal conditions necessary vs actual conditions determines germination rate: Water Oxygen Species specific temperature range Light (species specific) 37

<section-header><list-item><list-item><list-item><list-item>

Flower Induction

- Vegetative meristems begin to produce reproductive organs (flowers)
- Process irreversible
- Set period of time to induce, Set period of time to flower (species dependent)
- Flowering buds of woody perrenials are often induced the year before
- Annuals are often weeks after germination
- Environmental factors can also play a role

41

Environmental Factors Controlling Induction

- Day length-number of daylight hours (photoperiod)
- Light intensity
- Temperature
- Soil moisture content
- Nutrient status of the plant

Plant Response to Day Length Plant initiates flowers, special vegetative organ, or dormancy due to a specific day length (photoperiod) for a specific amount of time (60+ days) Short-day (<12 hrs)-example: natural fall color change/senescence, cotton flower initiation, poinsettia color change Long-day (>12 to 14 hrs)- example: perennial ryegrass Day-neutral (doesn't matter) Longer days mean more photosynthesis

Plant Response to Light Quality

- Relates to the color of the light source
- > Plants absorb light in the visible spectrum
 - Mostly blue and red light
- Red light is preferentially used, far red not
- The light quality is how plants sense competition
- Shade-avoidance: Plants attempt to grow taller, leaf size increases
- Seed germination needs red light
- Stomata need blue light to open

Photoperiod/Temperature Interactions

 Poinsettia exam 	nple:	
Day Length	Temperature (F)	Time to flower (days)
Short	70	65
Short	60	85

ng >67 Runner ort <67 Flower	Day Length	Temperature (F)	Result
ort <67 Flower	Short	>67	Flower
	Long	>67	Runner
ng <67 Flower	Short	<67	Flower
	Long	<67	Flower

Plant Response to CO₂ and O₂ Concentrations

► Higher CO2 levels:

- More CO2 for photosynthesis
- Less water loss (less stomatal conductance)
- Lower nitrogen concentrations (less nutrient uptake)
- Nutrients become limiting factor in growth

Less 02

- Soil compaction, overly-deep planting, water-logging
- Seed germination
- Controlled-atmospheric storage for fruit

53

Nitrogen and Plant Growth and Development

- High Nitrogen:
 - Increased shoot growth
 - Increased root growth at time of N application
 - Lower root:shoot growth ratio
 - Canopy congestion
 - Suppress flower initiation

Low Nitrogen

- Increased root growth
- Restricted photosynthesis (enzyme-limited)
- Chlorophyll break-down

