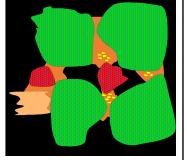
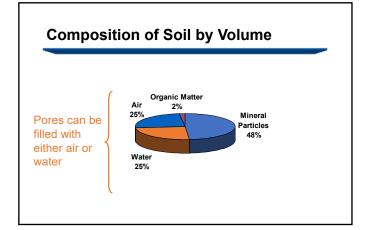

Soil Science for Master Gardeners

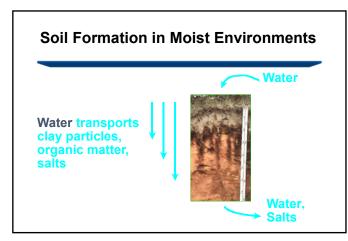

Presented by: Jeff Schalau Agent, Agriculture & Natural Resources The University of Arizona Cooperative Extension


Adapted from: Dr. James Walworth, Arizona Cooperative Extension Soil Specialist

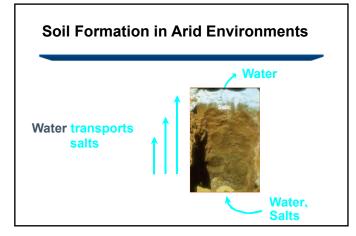
Soil Components

- Mineral Particles
 - sand
 - silt
 - clay
- Open Spaces (pores)
 air
 - water
- Organic Materials

<u>Residual</u>


- rock weathered in place
- organic deposits at soil surface
- <u>Transported</u>
- gravity: colluvial
 water: alluvial, marine, lacustrine
- wind: eolian (loess)
- ice: glacial

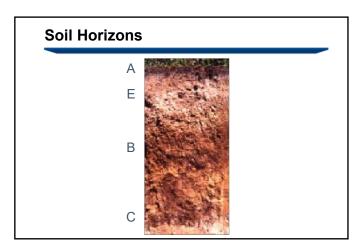
Factors of Soil Formation

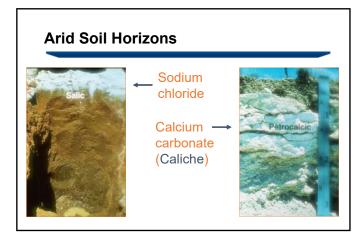

- Parent materials (geological or organic soil precursors)
- <u>Climate</u> (especially rainfall and temperature)
- <u>Biota</u> (living organisms vegetation, microbes, soil animals, human beings)
- <u>Topography</u> (configuration of soil surface)
- Time parent materials are subjected to soil formation processes

Weathering

- Physical weathering (disintegration)
 - heating/cooling
 - water, ice, wind abrasion
 - plants and animals
- <u>Chemical weathering</u> (chemical alteration)
 - hydrolysis (splitting by water) hydration (combining with water)
 - acid weathering
 - oxidation

Soil Horizons


Soils develop horizontal layers, or horizons, as materials move through the soil profile

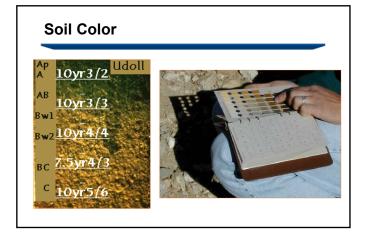


Soil Horizons

A horizon

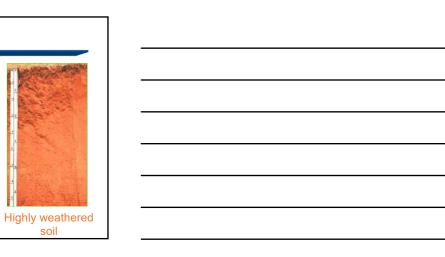
- dark layer, high in organic matter
- E horizon
- layer of leaching
 depletion of organic matter, clays, iron & aluminum oxides
- B horizon
 - zone of accumulation
 - enrichment of organic matter, clays, iron & aluminum oxides
- C horizon • parent material

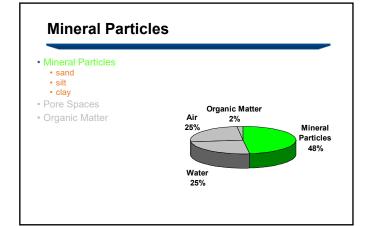
Soil Physical Properties


Color

- Texture
- Structure
- Drainage
- Depth
- Surface features

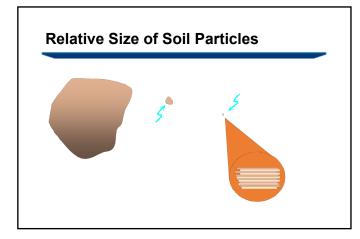
Soil Color

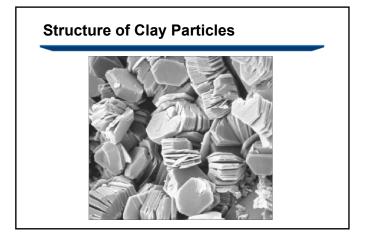

Organic matter:
 dark brown

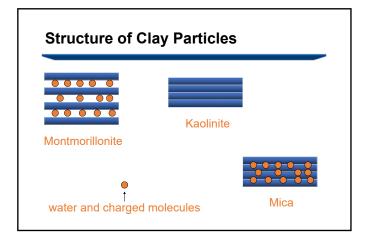

- dark brown High organic matter content
 Drainage conditions and degree of oxidation (weathering):
 - red-brown Good drainage
 - yellow
 - gray
- Moderate drainage Poor drainage

Soil Color

Organic soil




Young soil

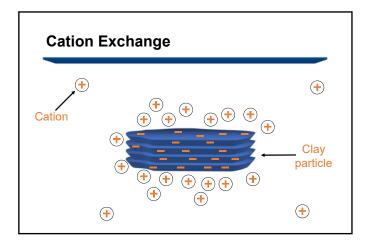


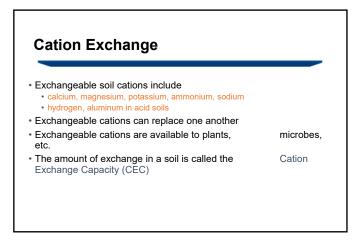
Soil Texture

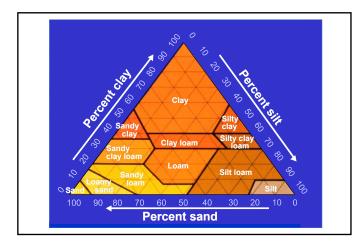
Soil texture is determined by the amount of sand, silt, and clay
 excludes
 organic matter
 large particles (larger than 2 mm)
 Size of mineral particles
 sand 2 to 0.05 mm
 silt 0.05 to 0.002 mm
 clay less than 0.002 mm

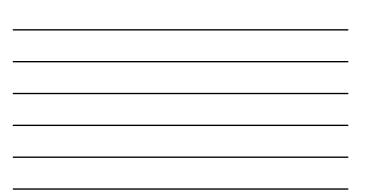
Specific Surface Area

Area per weight (square meters per gram)

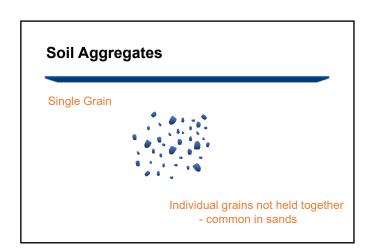

- 1 gram sand ~ 0.1 square meter
- 1 gram silt ~ 1 square meter
- 1 gram clay ~ 10 to 1,000 square meters

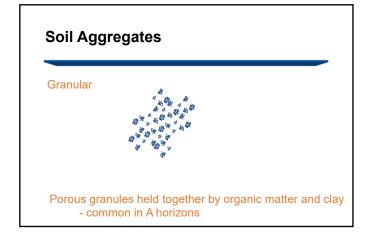

Particle Surfaces are Important

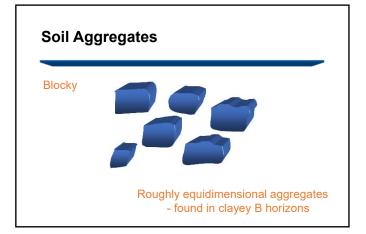

- Coated with water
- · Electrically charged
- Sites for microbial growth
- · Sites of chemical reactions
 - weathering
 - adsorption of chemicals
 - retention of nutrients
 - soil aggregate formation


Clay Particles have Electrical Charge

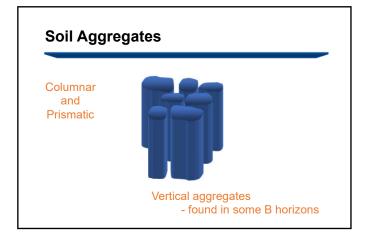
- Most clay particles are negatively charged
- lons (charged molecules)
 - · cations are positively charged ions
 - anions are negatively charged ions
- Cations are attracted to negatively charged clays
 - these cations are loosely held or exchangeable
 - this process is called cation exchange

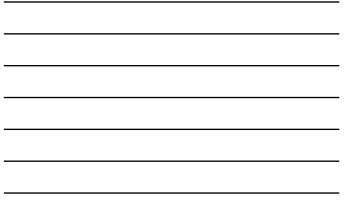


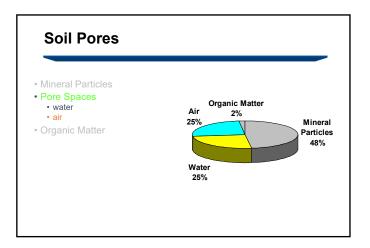


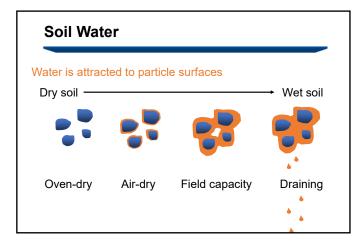

Soil Structure

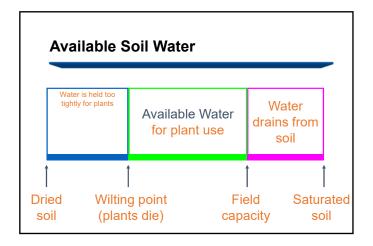
- Soil particles are grouped in aggregates
- Aggregates
 - vary in size, shape, and strength
 are promoted by
 - organic matter
 - calcium and other 'flocculating' cations
 - can be destroyed by tillage and traffic allow movement of air, water, roots

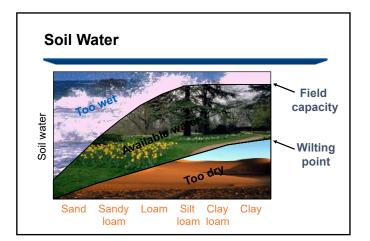


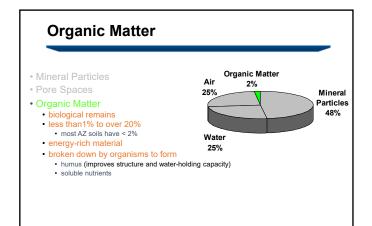


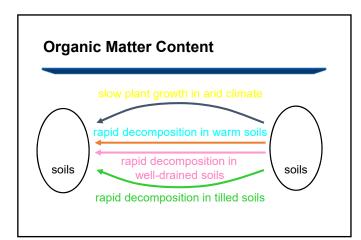


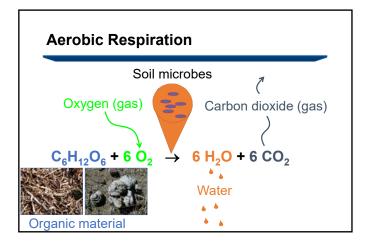











Organic Matter (OM)

- Soil structure

 aggregate formation promoted by OM
 OM increases water infiltration & water holding capacity

 OM increases cation exchange capacity
- OM can increase microbial activity
- Nutrients
 OM provides a nutrient source
 OM helps keep some nutrients available
- OM can retain pesticides

Organic Materials in Soil

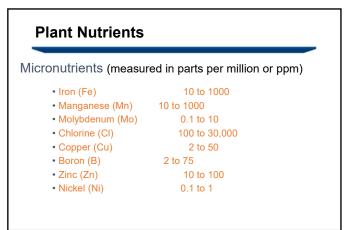
- Organic materials are decomposed by soil microbes carbon (C) in organics used for substrate and energy
 - nitrogen is also required

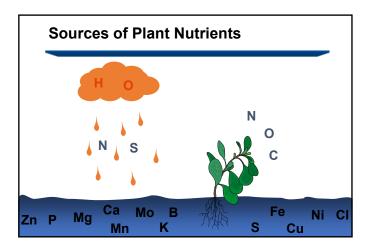
 about 1/10 as much N as C is needed
 C:N ratio of 10:1
- Organics with C:N ratios greater than about 10:1 require additional N

C:N of Some Organic Materials

Material

C:N ratio


Managing Organic Amendments


· High C:N ratio organics

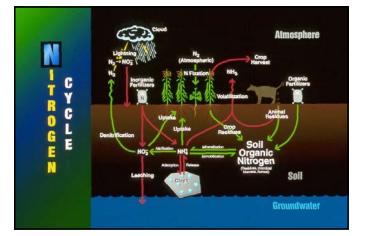
- add adequate N during soil application
- compost
 - to reduce C:N ratio
 to eliminate weed seeds
- Low C:N ratio organics
- add directly to soil
- watch for "burning" by high N organics
- High O₂ consumption
 - anaerobic conditions in poorly aerated soils

Plant Nutrients

Carbon (C)	45%	Nitrogen (N)	1 to 6%
Hydrogen (H)	6%	 Phosphorus (P)0. 	1 to 1%
Oxygen (O)	43%	 Potassium (K) 	1 to 6%
		 Calcium (Ca) 	0.1 to 4%
		 Magnesium (Mg) 	0.1 to 2%
		• Sulfur (S) 0.1	1 to 1.5%

Primary Nutrients

- The three nutrients that most often limit plant growth (N)
 - (P)
 - nitrogenphosphoruspotassium (K)


Nitrogen

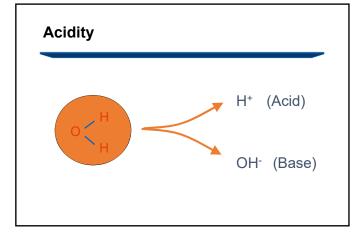
Nitrogen deficiency symptoms

- yellow or reddish leaves leaf tips & margins yellow and die starting with oldest leaves
- stunted plants

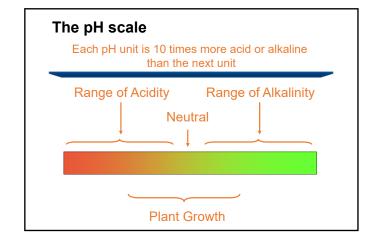
Phosphorus

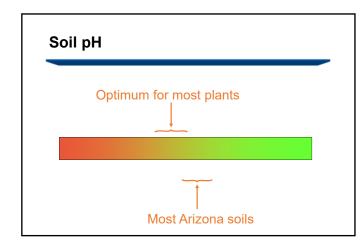
Phosphorus deficiency symptoms

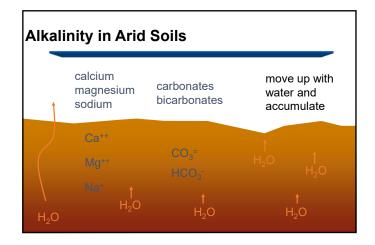
- purplish foliage oldest leaves firstslow growth, stunted plants
- slow growin, stunted plants
 dark green coloration
- delayed maturity

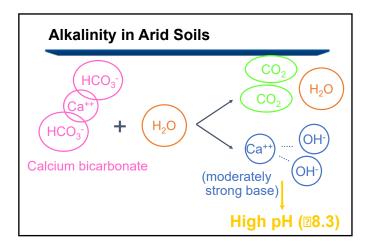


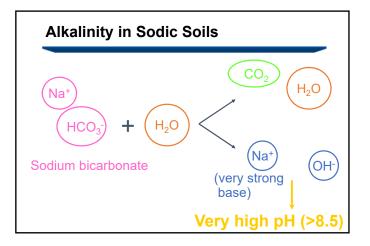
Potassium

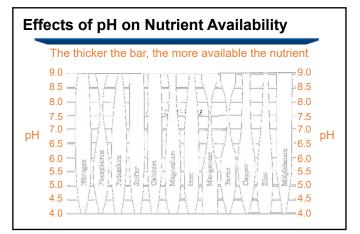

Potassium deficiency symptoms


- leaf tips and margins 'burn' oldest leaves first
- plants have weak stalks
- small fruit or shriveled seeds
- slow growth





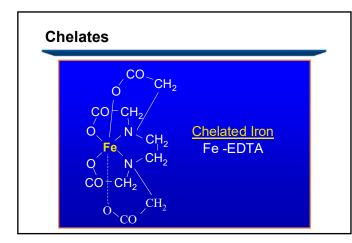


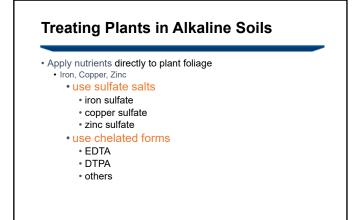




Treating Soil Alkalinity

Acidify the soil
 1) sulfuric acid

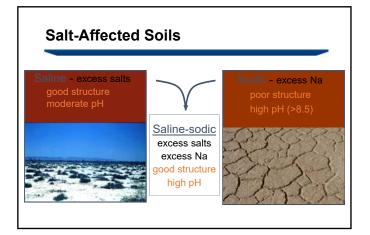

H₂SO₄


2) sulfur (biological reaction) 2S + 3O₂ + 2H₂O ℤ 2H₂SO₄

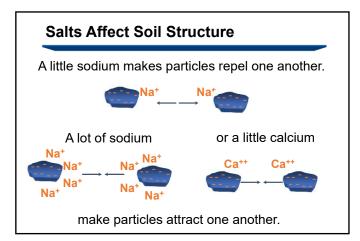
- 3) aluminum sulfate: Al₂(SO₄)₃ + 6H₂O ℤ 2Al(OH)₃ + 3H₂SO₄
- NOTE: gypsum (CaSO₄) is NOT an acidifying compound and will not lower pH of most soils!

Fertilizing Alkaline Soils

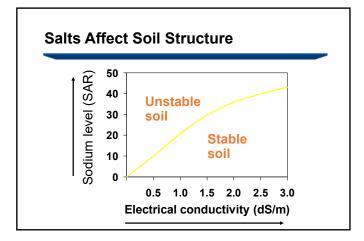
- Apply nutrients to high pH soils
- Metal nutrients are insoluble in alkaline soils • iron, manganese, zinc
- Use chelated forms
 - more soluble than unchelated forms
 - stay in solution longer
 - more available to plants


Salts and Soil

Salt-Affected Soils


- Salt-affected soils
 - Occur naturally in arid climates
 Can be formed by addition of salts in irrigation water

Water Transports Salts

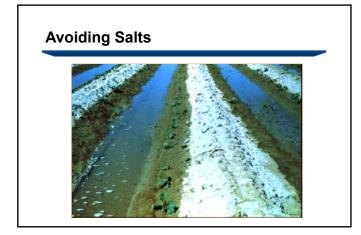


Tests for Soil Salts

- Measuring total soil salts 2 EC - electrical conductivity
- Measures of the amount of sodium
 SAR sodium adsorption ratio
 ESP exchangeable sodium percentage

Classifying Salt-Affected Soils

Measurement	Normal	Saline	Sodic	Saline-Sodic
EC (dS/m)	<4	>4	<4	>4
ESP	<15	<15	>15	>15
SAR	<13	<13	>13	>13


Electrica	I Conductivity (EC)	
EC (dS/m)	Plant response	

Salt-Affected Soils

- Plant age affects tolerance to salts
 Seedlings are most sensitive
 Mature plants are least sensitive
- Different plant parts may be variably affected
 - Seeds
 - Vegetation
- Plant species vary in salt tolerance


Sodium-Affected Soils

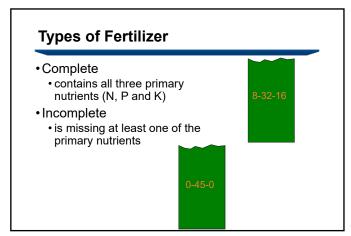
Poor structure
Poor drainage
May have surface cracking when dry
Very high pH (>8.5)

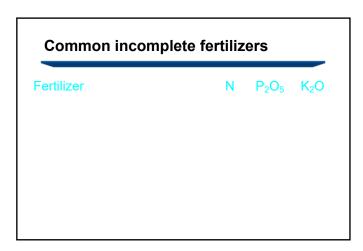
Managing Sodic Soils

- Stabilize structure by adding gypsum (CaSO₄) to replace Na⁺ with Ca²⁺
- Reduce salt level by flushing with water to wash out Na⁺ and excess gypsum^{*}
- *may be very difficult in soils with poor structure!

Fertilizers

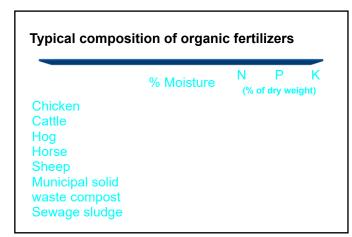
·Label must contain percent (by weight) of


• <u>total nitrogen</u> (N) • <u>available phosphate</u> (as P₂O₅) • P₂O₅ times 0.43 = P


• <u>soluble potash</u> (as K_2O)

```
• K<sub>2</sub>O times 0.83 = K
```

• Other nutrients may be specified



Slow-release fertilizers

- Release nutrients (usually nitrogen) over a long period of time
 slowly soluble materials
 - urea formaldehyde
 - granules coated with resins or sulfur
 sulfur-coated urea
 - Sullui-Coaleu u
 - Osmocote[®]
 - materials that must decompose to release nutrients
 - organic fertilizers

Organic fertilizers

- · Remains or by-products of plants or animals
 - cottonseed meal
 - blood mealfish meal
 - manures
- Relatively low nutrient contents
- Contain micronutrients
- Slow release
- Low burn potential
- · Condition soil by adding organic matter

Fertilizer formulations

- Fertilizers can be combined with herbicides
 common in turf formulations
- Fertilizers
 - granular solids
 - slow-release granulesliquids/water soluble powders
 - slow-release spikes/tablets

	N I station and	Deletive
Material	Nutrient level	Relative saltiness
Ammonium nitrate		
Ammonium sulfate		
Potassium nitrate Urea formaldehyde		
Urea		
Single superphosphate		
Potassium chloride		
Potassium sulfate		
Epsom salts		

Avoiding fertilizer burn

- Do not over-apply fertilizers
 - particularly nitrogen fertilizers
- Make sure adequate moisture is present after applying fertilizer
- Periodically flush soluble salts from soil
 - make sure adequate drainage is available
 - irrigate 2 to 3 times as long as normal every 6 to 8 weeks to flush salts from soil

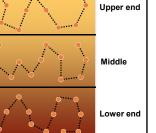
Soil Testing

Available nutrients

- Phosphorus
- Potassium
- Calcium
- Magnesium Nitrogen
- Sulfur
- Micronutrients

Soil properties

- Texture
- pH
- Cation Exchange Capacity (CEC)
- Electrical Conductivity (EC)
- Sodium Adsorption Ratio (SAR) or Exchangeable Sodium Percentage (ESP)

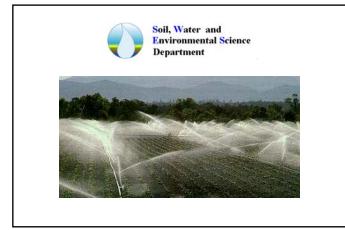

Soil Sampling

- · Obtaining a representative sample is the critical step in soil analysis
- A 1 cup sample from a 1,000 square foot field is 1/100,000 of the field! • A good soil sample
- made up of 15 to 25 cores or subsamples • never take less than 5 subsamples

Soil Sampling

Divide fields into uniform

- areas for sampling
- soil type slope
- degree of erosion cropping/use history
- growth differences



Soil Sampling

- Sample to the proper depth
 usually eight inches
- Make sure soil cores represent sampled area
 mix individual cores thoroughly to make sample
- Time of sampling • depends on analyses, field operations, etc.
- Sampling tools
 soil probe or sampling tube is best

