BACKYARD COMPOSTING

Presented by Jennifer Moreland

University of Arizona Yavapai County Cooperative Extension Master Gardener Program

YAVAPAI COUNTY MASTER GARDENERS

Note: Extension Offices are currently <u>closed</u> to walk-ins due to the COVID19 Restrictions but will re-open when deemed safe by the County Agent

- Extension Programs include
 - Master Gardeners Help Desk
 - Free Soil Testing by Master Gardeners
 - 4-H Youth Program
 - Youth outdoor science education
 - Family consumer health sciences
 - Professional food manager education courses
- MG Help Desk contact information

Camp Verde Help Desk	Prescott Help Desk	
VerdeValleyMG@gmail.com	PrescottMG@gmail.com	
928-554-8992	928-445-6590 ext 222	

LET'S DISCUSS COMPOSTING!

- Definition of Composting
- Why Everyone Should be Composting
- 7 Steps to Successful Composting
- Problem Solving
- Using Finished Compost

NOT BEING DISCUSSED...

X Not talking about Vermicomposting

X Not covering PermaCulture

X Not going into Large-Scale Industrial composting

WHAT IS COMPOSTING?

DEFINITION: Compositing is the aerobic decomposition of organic materials by microorganisms under controlled conditions

3 STAGES OF COMPOSTING:

WHY COMPOST?

• Improves soil structure,

drainage, aeration and water holding capacity

- Provides nutrients for plant
 growth that are released
 slowly and less likely to be
 leached away
- Reduce Landfill Burden

- Step 1. Select Composting Site
- □ Step 2. Choose a Container Type
- □ Step 3. Collect Raw Materials
- □ Step 4. Aerate The Compost Pile
- □ Step 5. Maintain Moisture Levels
- □ Step 6. Keep Proper Temperature
- □ Step 7. Cure The Compost

*Arizona Desert Botanical Garden Compost Bins

- Step 1. Select Composting Site
 - Minimum of 6 hours of sunlight BEWARE of AZ HEAT!
 - Away from structures and minimize view
 - o Access to water like hose or irrigation
 - Slightly sloped ground with good drainage NOT A DITCH!
 - Downwind from homes, windows, and outdoor lounging areas
 - Barricade out large animals
 like squirrels, packrats, birds, skunks,
 deer and DOGS!

- Step 2. Choose Container Type to build or buy
 - Many shapes work: Heap, Hoop, Bin, Barrel

©2001 HowStuffWorks

* Size: Ideally 1 cubic yard (3ft x 3ft x 3ft)

• Step 2. Choose Container Type to build or buy

Right: Arizona Desert Botanical Garden Compost Bins

Center: My Neighbor's backyard compost pile

Left: UMN Extension Office hoop bins

- Step 2. Container Type Here's what I did...
- Purchased double small bins on frame
- ✓ Bins spin on axel
- ✓ Third "bin" is open bucket
- Monthly progression

- Step 3. Collect Raw Materials
 - Use natural and organic materials
 - Chopped, shredded, clipped will decompose faster (<2in)
 - Acceptable: grass, leaves, wood, bark, stems, stalks, garden waste, kitchen scraps, coffee grounds & filters, Tea bags, eggshells, newspapers, cardboard
 - X Beware pests and diseased pieces
 - X Unacceptable: meats, oils, dairy, bones, pet waste, synthetics, glossy papers, toxic chemicals
 - X Do NOT use toxic plant materials

- Step 3. Raw Materials continued
 - Carbon-to-Nitrogen Ratio (C:N) is 25:1 to 40:1

Carbon-rich materials		Nitrogen-rich materials	
Wood chips	400:1	Fresh leaves	40:1
Cardboard	350:1	Garden waste	30:1
Sawdust	325:1	Fruit waste	25-40:1
Newspaper	175:1	Horse Manure	30:1
Straw	75:1	Coffee Grounds	20:1
Dried leaves	60:1	Grass Clippings	20:1
		Cow Manure	20:1
		Vegetable Scraps	12-25:1
		Chicken Manure	7:1

• Step 3. Raw Materials continued

- Build the pile in layers...
 - Brown: 6-8 inches
 - Green: 3-4 inches
 - Manure: 1-2 inches
 - Native Soil: 1-2 inches
- Create 3 or 4 repetitions

- Step 4. Aerate the pile
 - Turn the Pile but not too often
 - Re-introduction of oxygen
 - Use pitchfork or mechanical turner
 - How often affects how quickly the pile decomposes
 - Turn weekly finished in 1 to 2 months
 - Turn monthly finished in 4 to 6 months
 - Don't turn, wait for 6 to 12 months

- Step 5. Keep the pile moist
 - Need moisture for metabolic process
 - Smaller piles need to be watered more often
 - Choosing a site that has good water access is a good idea
 - Moist like a damp sponge
 - Too dry and process slows down
 - Too wet and water displaces air in pore spaces

Be Cautious if using a Barrel Tumbler! Need good drain holes and balance of materials.

- Step 6. Keep proper temperature
 - Mesophilic or Cold composting (50F to 105F)
 - Thermophilic or Hot composting (above 105F)
 - Temps above 110F to 150F destroys most pathogens, weed seeds and fly larvae
 - Beware of spontaneous combustion especially in Arizona heat

- Step 7. Curing compost
 - Allow the finished pile to sit UNDISTURBED for 1 month
 - Stabilizes the final chemical and decomposition reactions
 - Improper curing will kill your young plants from release of gases

- So what can go wrong?
 - Practice, Trials, What about... Don't be afraid to get started!
 - Learn from Unpleasant Odors
 - Slimy or Waterlogged Piles?
 - Slow or No Decomposing Action

- Unpleasant Odors
 - Compaction means insufficient oxygen; turn the pile
 - Excess moisture; add porous material like sawdust
 - Sour or Sulfurous smell? Turn the pile to increase oxygen
 - Ammonia smell? Add carbon to stabilize the nitrogen

- Slimy or waterlogged pile
 - Stir the outer drier materials toward the wet center
 - Reduce added water especially if on a timer
 - Reconsider drainage of site
 - If pile is damp but won't heat, add ammonia sulphate or grass clippings (add nitrogen)

- Slow breakdown of organic material
 - Try turning the pile if in mesophilic cold temps
 - Insulate sides to capture metabolic warmth
 - Add water while turning the pile
 - Move Barrels next to a warm rock wall
 - May need more nitrogen but start sparingly
 - Add 1lb nitrogen to 1 cubic yard of material
 - Cold weather may require insulation or larger pile size
 - OR the active stage of composting is complete

FINISHED COMPOST

- Should be dark, crumbly and have earthy odor
- Pile should feel only slightly warmer than ambient air temp
- Pile will reduce in size up to half since raw material stage

FINISHED COMPOST

- Hot Composting creates a soil-like compost
 - Particle size is less than ¹/₂ inch
 - Use as a soil amendment
 - Incorporate just prior to planting
 - Use up to 1:1 ratio with soil
 - Gardens, Containers, Turf
 - Existing plantings can be side-dressed or drilled in being aware of roots
 - Promotes better rooting
 - Improves soil structure
 - Better aeration and water retention
 - Reduces need for fertilizer

FINISHED COMPOST

- Cold Composting creates a chunky compost with larger bits of organic matter
 - Use as a top dressing or mulch
 - Place loosely around plantings without disturbing the soil
 - Promotes roots closer to the surface
 - Reduces moisture loss

- Keeps soil cool so wait until soil temps warm up
- Decomposition of mulch by organisms will be naturally moved down into the soil

BACKYARD COMPOSTING

- It easy and fun!
- So many benefits for your yard and garden!
- It is the Ultimate Recycling Program!

Any Questions?

For more information about our programs, visit our website at extension.arizona.edu/yavapai

The University of Arizona is an equal opportunity provider.

Learn more at: https://extension.arizona.edu/legal-disclaimer

